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Résumé 
 

La thèse vise à étudier le comportement mécanique des 
sables sous la condition de cisaillement simple et à son 
application au calcul des pieux. Tout d'abord, un modèle 
de sable récemment développé (SIMSAND) prenant en 
compte l'état critique est introduit avec une procédure 
directe de détermination des paramètres. Le modèle est 
implanté dans un code de calcul aux éléments finis qui a 
fait l’objet de différentes validations. Ensuite, le modèle 
est amélioré en considérant l'anisotropie inhérente lors 
de la rotation des contraintes principales sous la 
condition de cisaillement simple et a été validé en 
utilisant les résultats des essais triaxiaux et de 
cisaillement simple sur le sable de Fontainebleau. Les 
essais de cisaillement simple sont analysés en imposant 
les conditions de sollicitations réelles tridimensionnelles 
appliquées par l’appareillage utilisé. L'inhomogénéité de 
l'échantillon avec l'effet de la taille de l'échantillon est 
également étudiée. Puis, des essais de cisaillement 
simple cycliques drainés et non-drainés sur le sable de 
Fontainebleau sont effectués pour étudier les 
caractéristiques sous charges cycliques, telles que la 
dégradation de la contrainte normale effective et 
l'accumulation de la déformation volumique, compte 
tenus de certains facteurs comme l’indice des vide initial, 
la contrainte normale appliquée, le rapport de contrainte 
de cisaillement cyclique et le rapport de contrainte de 
cisaillement moyenne. Sur la base de ces résultats, deux 
modèles analytiques sont proposés pour prédire la 
dégradation à long terme de la contrainte normale 
effective et l'accumulation des déformations volumiques 
en fonction du nombre de cycles. En outre, les essais 
cycliques de cisaillement simple sont simulés par le 
modèle SIMSAND amélioré en utilisant une technique 
d'inversion de contrainte. Enfin, on simule une série de 
pieux modèles sous charges monotone et cyclique pour 
laquelle la résistance en pointe du pieu est évaluée ainsi 
que la réponse du sol entourant le pieu. 
 
Mots clés 
Cisaillement simple; rotation des contraintes 
principales; comportement cyclique; loi de 
comportement, fondation sur pieux 

Abstract 
 

The thesis aims to study the mechanical behaviour of 
sand under simple shear condition and to apply the 
results to the numerical simulation of pile foundation. 
First, a recently developed critical state sand model 
(SIMSAND) is introduced with a straightforward 
procedure of parameters determination, implemented 
into a finite element code and then subjected to a series 
of validations. Then, the model is enhanced by 
considering the inherent anisotropy during the principal 
stress rotation under the simple shear condition and 
validated by using results of both triaxial tests and simple 
shear tests on Fontainebleau sand. Simple shear tests 
are analysed by simulating in three-dimensions the real 
conditions imposed by the simple shear apparatus. The 
inhomogeneity of the samples with the effect of sample 
size is also investigated. Furthermore, undrained and 
drained cyclic simple shear tests on Fontainebleau sand 
are conducted to investigate the cyclic responses, such 
as the effective normal stress degradation and the 
volumetric strain accumulation, respectively, considering 
some impact factors such as the initial void ratio, the 
normal stress, the cyclic shear stress ratio and the 
average shear stress ratio. Based on these results, two 
analytical models are proposed to predict the long-term 
degradation of the effective normal stress and the 
accumulation of the volumetric strain with the number of 
cycles. Moreover, the cyclic simple shear tests are 
simulated by the enhanced SIMSAND model by 
incorporating the stress reversal technique. Finally, a 
series of model pile tests under monotonic and cyclic 
loadings are simulated based on which the cone 
resistance of the piles is evaluated as well as the 
response of the soil surrounding the pile. 
 
 
Key Words 
Simple shear; principal stress rotation; cyclic 
loading; constitutive model, sand, pile foundation 
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Abstract  

 The thesis aims to study the mechanical behaviour of sand under simple shear condition 

and to apply the results to the numerical simulation of pile foundation. First, a recently 

developed critical state sand model (SIMSAND) is introduced with a straightforward 

procedure of parameters determination, implemented into a finite element code and then 

subjected to a series of validations. Then, the model is enhanced by considering the inherent 

anisotropy during the principal stress rotation under the simple shear condition and validated 

by using results of both triaxial tests and simple shear tests on Fontainebleau sand. Simple 

shear tests are analysed by simulating in three-dimensions the real conditions imposed by the 

simple shear apparatus. The inhomogeneity of the samples with the effect of sample size is 

also investigated. Furthermore, undrained and drained cyclic simple shear tests on 

Fontainebleau sand are conducted to investigate the cyclic responses, such as the effective 

normal stress degradation and the volumetric strain accumulation, respectively, considering 

some impact factors such as the initial void ratio, the normal stress, the cyclic shear stress 

ratio and the average shear stress ratio. Based on these results, two analytical models are 

proposed to predict the long-term degradation of the effective normal stress and the 

accumulation of the volumetric strain with the number of cycles. Moreover, the cyclic simple 

shear tests are simulated by the enhanced SIMSAND model by incorporating the stress 

reversal technique. Finally, a series of model pile tests under monotonic and cyclic loadings 

are simulated based on which the cone resistance of the piles is evaluated as well as the 

response of the soil surrounding the pile. 

Keywords: Simple shear; principal stress rotation; cyclic loading; constitutive model, sand, 

pile foundation 
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Résumé 

  

 La thèse vise à étudier le comportement mécanique des sables sous la condition de 

cisaillement simple et à son application au calcul des pieux. Tout d'abord, un modèle de 

comportement pour le sable récemment développé (SIMSAND), prenant en compte l'état 

critique, est introduit avec une procédure directe de détermination des paramètres. Le modèle 

est implanté dans un code de calcul aux éléments finis qui a fait l’objet de différentes 

validations. Ensuite, le modèle est amélioré en considérant l'anisotropie inhérente lors de la 

rotation des contraintes principales sous la condition de cisaillement simple et a été validé en 

utilisant les résultats des essais triaxiaux et de cisaillement simple sur le sable de 

Fontainebleau. Les essais de cisaillement simple sont analysés en imposant les conditions de 

sollicitations réelles tridimensionnelles appliquées par l’appareillage utilisé. L'inhomogénéité 

de l'échantillon en lien avec la taille de l'échantillon est également étudiée. Puis, des essais de 

cisaillement simple cycliques drainés et non-drainés sur le sable de Fontainebleau sont 

effectués pour étudier les caractéristiques sous charges cycliques, telles que la dégradation de 

la contrainte normale effective et l'accumulation de la déformation volumique, compte tenus 

de certains facteurs  comme l’indice des vide initial, la contrainte normale appliquée, le 

rapport de contrainte de cisaillement cyclique et le rapport de contrainte de cisaillement 

moyenne. Sur la base de ces résultats, deux modèles analytiques sont proposés pour prédire la 

dégradation à long terme de la contrainte normale effective et l'accumulation des 

déformations volumiques en fonction du nombre de cycles. En outre, les essais cycliques de 

cisaillement simple sont simulés par le modèle SIMSAND amélioré en utilisant une 

technique d'inversion de contrainte. Enfin, on simule une série de pieux modèles sous charges 

monotone et cyclique pour laquelle la résistance en pointe du pieu est évaluée ainsi que la 

réponse du sol entourant le pieu. 

 

Mots-clés: Cisaillement simple; rotation des contraintes principales; comportement cyclique; 

loi de comportement, fondation sur pieux 
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General introduction  

 In offshore engineering, pile foundations are generally subjected to a series of combined 

cyclic loading, lateral and axial, monotonic and cyclic. The degradation of the shaft capacity 

of pile foundation can occur when the structure is subjected to a very long-term cyclic 

loading or to other extreme natural conditions. This effect can be explained by the 

degradation of the radial effective stress and also by the accumulation of volumetric strains in 

the soil element surrounding the piles under cyclic shearing condition. In laboratory, the 

simple shear test is considered as an effective and reliable tool to reproduce the shearing 

condition within the soil. Therefore, the aim of this thesis is to study the mechanical response 

of sand and also its engineering application to pile foundation. It is divided into seven 

chapters presenting the experimental and numerical studies of simple shear tests, and is 

outlined as follows: 

 In chapter 1, the available test results on soils are first summarized and applied to 

investigate the soil mechanical behaviour surrounding the pile. These results demonstrate that 

the simple shear tests can well reproduce the in-situ shearing condition around the pile. Then, 

current monotonic and cyclic simple shear tests are presented to review the basic mechanical 

responses. Then, constitutive models for granular materials, ranging from phenomenological, 

multi-scale to discrete element models, are also summarized. 

 In chapter 2, the framework of a recently developed critical-state based sand model 

(SIMSAND) is introduced. Then, a straightforward method for calibrating the model 

parameters is proposed. Moreover, the SIMSAND model is implemented into a finite element 

code and verified by simulating several footing tests with the straightforwardly determined 

parameters. 

 In chapter 3, the SIMSAND model is enhanced by considering the inherent anisotropy 

accounting for the effect of principal stress rotation. Then, three-dimensional finite element 

analyses of the real GDS-type simple shear apparatus are performed to illustrate the 

inhomogeneity of the loading conditions caused by the absence of complementary shear 

stress on the lateral boundary. Furthermore, complementary simulations with different aspect 

ratios of the cylindrical specimens are conducted and discussed.  

 In chapter 4, undrained monotonic and cyclic simple shear tests on Fontainebleau sand 

are presented to study the degradation of the effective normal stress in order to represent the 

behaviour of a soil element surrounding the pile. Then, an analytical model to evaluate the 

normal stress degradation is formulated and the procedure of parameter identification is also 

presented. The performance of the suggested analytical model is analyzed, based on 

elementary test results on Fraser River sand, Quiou sand, and Karlsruhe sand, and it is also 

validated by a series of additional tests on Fontainebleau sand.  
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 In chapter 5, stress-controlled drained simple shear tests with 5000 cycles on 

Fontainebleau sand are presented to investigate four influential parameters on the cyclic 

strain accumulation, i.e. the initial void ratio, the normal stress, the cyclic shear stress ratio 

and the average shear stress ratio. Then, the influence of each parameter on the volumetric 

strain accumulation is summarized and a simple analytical model is proposed to estimate the 

cyclic accumulation of the volumetric strain accounting for these four effects. The 

applicability of the model is finally examined by simulating another series of tests with the 

parameters calibrated from the training tests. 

 In chapter 6, the SIMSAND model is enhanced by the shear stress reversal technique to 

describe both monotonic and cyclic behaviours of granular materials. The predictive ability 

of the model for reproducing the basic cyclic features of granular materials is first examined, 

based on undrained cyclic triaxial tests, drained cyclic tests and also constant mean effective 

pressure (p) triaxial tests on Toyoura sand. Then, the performance of the model in simulating 

both triaxial and simple shear cyclic tests on Fontainebleau sand is also analysed. Finally, a 

series of model pile tests under monotonic and cyclic loadings are simulated based on which 

the cone resistance of the piles is evaluated as well as the mechanical response of the soil 

surrounding the pile. 

Chapter 7 presents the general conclusions and perspectives. 
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Introduction générale 

 

En ingénierie offshore, les fondations sur pieux sont généralement soumises à une série 

de charges cycliques combinées, latérales et axiales, monotones et cycliques. La dégradation 

de la capacité portante de la fondation peut se produire lorsque la structure sera soumise à un 

chargement cyclique à très long terme ou à d'autres conditions naturelles extrêmes. Cela peut 

s'expliquer par la dégradation de la contrainte radiale effective ainsi que par l'accumulation de 

la déformation volumique de l'élément de sol soumis à des conditions de cisaillement 

cyclique autour du pieu. Au laboratoire, l’essai de cisaillement simple est considéré comme 

un moyen efficace et fiable de reproduire l'état de cisaillement du sol autour des pieux. Par 

conséquent, visant à étudier la réponse mécanique du sable et aussi son application à 

l'ingénierie, la thèse est divisée en huit chapitres comprenant études expérimentales et 

numériques de l’essai de cisaillement simple, comme suit: 

Dans le chapitre 1, les essais élémentaires réalisés sur différents types de sol sont 

d'abord résumés et sont utilisés pour étudier le comportement mécanique du sol entourant le 

pieu, ce qui démontre que les essais de cisaillement simple peuvent reproduire l'état de 

cisaillement in situ autour du pieu. Ensuite, les essais de cisaillement simple monotones et 

cycliques, disponibles dans la littérature, sont présentés, pour passer en revue les réponses 

mécaniques de base. Puis, les modèles de comportement des matériaux granulaires sont 

également résumés, comprenant des modèles phénoménologiques, multi-échelles et aux 

éléments discrets. 

Dans le chapitre 2, un modèle de sable basé sur l'état critique récemment développé 

(SIMSAND) est introduit. Une méthode directe d’identification des paramètres du modèle est 

proposée. Le modèle SIMSAND est ensuite implémenté dans un code aux éléments finis et 

vérifié en simulant plusieurs essais de fondation superficielle avec les paramètres directement 

déterminés. 

Dans le chapitre 3, le modèle SIMSAND est amélioré en considérant la prise en compte 

de l'anisotropie inhérente lors de la rotation des contraintes principales. L'analyse par 

éléments finis tridimensionnels de l'appareil de cisaillement simple de type GDS est réalisée 

pour illustrer les caractéristiques de non homogénéité du chargement au sein de l’échantillon, 

causées par l'absence de contrainte de cisaillement complémentaire sur la paroi latérale. De 

plus, des simulations complémentaires avec différents rapports d'aspect d'échantillons 

cylindriques sont conduites et discutées. 

Au chapitre 4, les essais de cisaillement simple monotone et cyclique non drainés 

réalisés sur le sable de Fontainebleau sont présentés pour étudier la dégradation de la 

contrainte normale effective afin de représenter le comportement de l'élément de sol 
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entourant le pieu. Ensuite, un modèle analytique pour évaluer la dégradation de la contrainte 

normale est formulé et la procédure d'identification des paramètres est également présentée. 

La performance du modèle analytique proposé est analysée à partir de résultats d’essais sur le 

sable du fleuve Fraser, le sable de Quiou et le sable de Karlsruhe. Elle est également validée 

par une série d’essais complémentaires sur le sable de Fontainebleau. 

Dans le chapitre 5, les essais de cisaillement simple drainés à contrainte contrôlée 

comprenant 5000 cycles sont effectués sur le sable de Fontainebleau pour étudier quatre 

effets sur l'accumulation des déformations cycliques : l’indice des vides initial, la contrainte 

normale, l’amplitude de la contrainte cyclique et la valeur de la contrainte moyenne. Ensuite, 

l'accumulation de la déformation volumique en régime cyclique pour chaque effet est 

analysée et un modèle analytique simple est également proposé pour estimer le comportement 

cyclique en tenant compte de ces quatre effets. L'applicabilité du modèle est finalement 

examinée en simulant une série d’essais différents de ceux utilisés pour caler les paramètres 

du modèle.   

Dans le chapitre 6, le modèle SIMSAND est amélioré par la technique d'inversion de la 

contrainte de cisaillement pour décrire les comportements monotones et cycliques des 

matériaux granulaires. La capacité prédictive du modèle à reproduire les caractéristiques des 

matériaux granulaires est d'abord examinée pour les essais triaxiaux cycliques non drainés, 

les essais triaxiaux cycliques sous contrainte moyenne effective (p) constante sur le sable de 

Toyoura. Ensuite, la performance du modèle sur la simulation des essais triaxiaux et de 

cisaillement simple sur sable de Fontainebleau est également analysée. Finalement, une série 

d’essais de pieux sous des charges monotones et cycliques est simulée, au cours de laquelle  

la résistance en pointe des pieux ainsi que la réponse mécanique du sol entourant le pieu sont 

calculées. 

Le chapitre 7 présente les conclusions et perspectives générales. 
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 Literature review 

1.1 Engineering background  

 As a result of instabilities induced by long-term cyclic loadings in offshore engineering, 

the radial stress of soil surrounding the pile gradually decreases, causing the pile foundation 

to lose shaft capacity. Many field and laboratory pile load tests have been performed over the 

decades in hopes of explaining the basic mechanisms of a pile under cyclic loading. In 

laboratory conditions, tests using the mini-ICP (Imperial College Pile) model pile installed in 

a pressurized calibration chamber (Yang et al. 2010; Tsuha et al. 2012a) have also provided 

key information for improving the modelling of pile–soil interaction and design rules. Based 

on recent work treating the degradation of shaft capacity in model pile tests, scholars (Lehane 

et al. 1993; Dupla and Canou 1994, 2003; Anderson 2009; Rimoy 2013; Bekki et al. 2016) 

have shown that the local shear stress f acting on the pile shaft can be expressed by the 

simple Coulomb criterion  =rtan, where  is the friction angle between soil and pile and 

r is the radial effective stress acting on the shaft at failure, in which the degradation of 

radial effective stress  r will greatly decrease the local shaft shear stress  and eventually 

cause the pile to lose shaft capacity (Jardine et al. 2005). Accordingly, the investigation of the 

mechanical response of the soil element adjacent to the pile plays an important role in 

understanding the behaviour of shaft capacity. 

1.2 Cyclic soil-elementary tests applied to pile-foundation 

 Comparing to the model pile tests, conducting a soil elementary test in the laboratory 

provides an easy and effective way of investigating the basic mechanical behaviour of soil. 

For this kind of laboratory test, the in-situ conditions should be replicated as closely as 

possible, thus to ensure high-quality, reliable data that can be applied to the engineering field. 

Various laboratory elementary tests have also been conducted to study the cyclic behaviour 

of a soil element surrounding the pile, including the three general categories of triaxial testing, 

direct interface shear testing and simple shear testing (Boulon and Foray 1986; Anderson 

2009). 

1.2.1 Triaxial shearing condition 

 Extensive cyclic triaxial tests have been conducted to investigate the mechanical 

behaviour of soil (Ishibashi et al. 1977; Hyodo et al. 1991; Vaid and Sivathayalan 1996; 

Uchida and Stedman 2001; Vaid et al. 2001). Regrettably, however, they have done so 
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without replicating the in-situ conditions surrounding the pile and thus have reached nothing 

more than general conclusions concerning pile shaft capacity. 

 As shown in Figure 1.1(a), the shaft capacity of a pile depends on the radial stress 

surrounding the pile. Sim et al. (2013a) suggested that the deviatoric stress q (=1-3) of 

triaxial tests is analogous to the pile shaft shear stress rz and the degradation of mean 

effective stress p under cyclic undrained triaxial tests can be taken as an indicator of how 

local shaft radial stress r may change close to the pile under cyclic loading. 

 Sim et al. (2013a) and Aghakouchak et al. (2015) investigated the cyclic behaviour of 

the soil element through cyclic triaxial tests while conducting complementary analysis of 

shaft capacity degradation behaviour for the pile, studied through the in-situ field Dunkerque 

pile tests (Jardine and Standing 2000, 2012) as well as through mini-ICP model pile tests 

(Yang et al. 2010; Tsuha et al. 2012a; Rimoy 2013). To replicate in-situ conditions, the soil 

specimen was first K0 consolidated to point B, and then stress levels were unloaded to 

preloading point C. Drained and undrained cyclic tests were both carried out to measure 

strain accumulation and stress degradation, respectively. 

 

Figure 1.1 Schematic diagram (a) soil element around pile, (b) specimen loading path after 

(Sim et al. 2013a; Aghakouchak et al. 2015) 

 Figure 1.2 presents the mean effective stress and axial strain versus the number of cycles 

under different cyclic stress ratios (CSR=qcyc/p0 for triaxial), showing that an increase of 

CSR will increase both mean effective stress degradation rate and axial strain accumulation 

rate. When CSR > 0.5, noticeable drift can be found along the curves of both mean effective 

pressure and axial strain, indicating that the loading condition CSR>0.5 corresponds to an 

unstable zone. Moreover, the range of 0.3<CSR<0.5 corresponds to a metastable zone, and 

CSR<0.3 corresponds to a stable zone. These cyclic triaxial results match the cyclic loading 

responses of the pile shafts, sharing similar behaviours about the stable, metastable and 

unstable zones as outlined by Jardine et al. (2005; 2012). 

 

(a) (b)
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Figure 1.2 Stress-strain state under cyclic loading on Fontainebleau sand (a) degradation of 

mean effective stress, (b) accumulation of axial stress (Aghakouchak et al. 2015) 

1.2.2 Soil-structure interface shearing condition 

 Boulon and Foray (1986) suggested that a direct interface shear test having a condition 

of constant normal stiffness (CNS) can be used to explain the progressive degradation of 

radial stress at the pile shaft, as shown in Figure 1.3, using a spring of appropriate stiffness 

(an infinite stiffness is similar to a constant volume condition). Constant normal stiffness was 

imposed by a constant ratio n/u between the variation of normal stress acting on the 

interface n divided by the variation of normal displacement u. However, in past decades, 

numbers of soil–structure cyclic interface tests had been performed with only few cycles 

(typically 102 cycles) as in (Al-Douri and Poulos 1992; Fakharian and Evgin 1997; Oumarou 

and Evgin 2005; Mortara et al. 2007) and tests with large number of cycles still have hardly 

been studied, except by Pra-ai and Boulon (2017). 

 

Figure 1.3 Schematic diagram of soil-pile interface direct shear tests (Pra-ai and Boulon 2017) 

 Most recently, long-term cycles (>104) of soil–structure interface shear tests were 

performed on Fontainebleau sand having a condition of constant normal stiffness, first by 

Pra-Ai (2013) and then by Pra-ai and Boulon (2017). Experimental results show that a higher 

normal stiffness corresponds to a greater-than-normal stress degradation, as seen in Figure 

1.4(a). What’s more, the average stress ratio (ave/n) under the highest stiffness 
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(5000kPa/mm) rapidly moved toward the critical stress ratio (as cr), as seen in Figure 1.4(b), 

where cr is the critical stress ratio, ave the level of the mean cyclic shear stress, cyc the 

cyclic component of the shear stress (half amplitude) and n the mean cyclic normal stress. 

 

Figure 1.4 Experimental results (a) degradation of normal stress; (b) evaluation of stress ratio 

(Pra-ai and Boulon 2017) 

1.2.3 Simple shearing condition  

 Because of its operability and simplicity, the simple shear test has been widely used to 

assess the shearing behaviour of soil under field loading conditions (e.g., slope, pile driving, 

landslides, earthquakes). Randolph and Wroth (1981) suggested that the shaft capacity of the 

driven pile can be well replicated by means of the simple shear tests as shown in Figure 1.5. 

More, Anderson (2009) noted that the simple shear test is acknowledged as providing more 

representative in-situ shearing conditions (e.g., symmetrically cyclic shear strain when 

considering principal stress rotation) than those offered by triaxial tests and direct shear tests. 

 

Figure 1.5 Schematic diagram of soil-pile interface (Randolph and Wroth 1981) 

 In recent decades, numerous cyclic simple shear tests have been conducted on sand with 

low cyclic numbers (Peacock 1968; Martin et al. 1975; Ishihara and Yamazaki 1980; Vaid 

and Sivathayalan 1996; Mao and Fahey 2003; Wood and Budhu 2014). The cyclic simple 

shear responses of soils (e.g., liquefaction, strain accumulation, shear stiffness, damping ratio 

degradation) have been investigated (Vaid et al. 2001; Matsuda et al. 2011; Da Fonseca et al. 
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2015; Porcino et al. 2015), and without an eye to explaining the links between the simple 

shear response and the shaft capacity degradation of a pile, especially for long-term cyclic 

loading. 

 Most recently, Nikitas et al. (2017) suggested that the pile foundation of an offshore 

wind turbine (OWT) suffered a series of combined cyclic loadings (Anderson 2009), 

including cyclic overturning moment (caused by both wind thrust loading and wave loading), 

as depicted in Figure 1.6. Two types of soil-pile interaction boundaries were pointed out by 

Nikitas et al. (2017): (1) cyclic soil compression (caused by lateral pile deflection) and (2) 

cyclic shaft shearing (caused by pile bending). 

  

 

 

Figure 1.6 Offshore wind foundation and its schematic diagram of loads (Nikitas et al. 2017) 

 Nikitas et al. (2017) presented the results of cyclic drained simple shear tests (strain-

controlled by cyclic shear strain cyc) with 50,000 cycles considering various shear strain 
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amplitudes, cyclic stress ratios and normal stresses, examining the change in shear modulus 

and the accumulation of strain during long-term cyclic loading. Figure 1.7 shows that 

enlarging the shear strain amplitude will increase the accumulation rate of vertical strain 

(Figure 1.7a) and reduce the shear modulus (Figure 1.7b). Accordingly, the experimental 

results showed that the shear modulus generally increases with loading cycles, consistent 

with the observations made during model tests of offshore wind foundation as well as during 

field tests (Bhattacharya et al. 2011; Cuéllar et al. 2012; Cui and Bhattacharya 2016). 

 

Figure 1.7 Cyclic drained simple shear tests with 100kPa normal stress: (a) vertical strain 

with cyclic number, (b) shear modulus with cyclic number (Nikitas et al. 2017) 

1.3 Experimental investigation of simple shear tests 

 Over the past decades,  several types of the simple shear apparatus have been developed, 

such as the Cambridge-type apparatus with cubical specimen and rigid boundaries (Roscoe 

1953), the NGI-type apparatus with cylindrical specimen and wire-reinforced membrane 

(Bjerrum and Landva 1966) and the GDS-type apparatus with cylindrical specimen and 

stacked steel rings (Kjellman 1951; Hooker 2002), seen in Figure 1.8. 

 The Cambridge-type simple shear apparatus, shown in Figure 1.8(a), can host a cubical 

specimen 100 mm long, 100 mm wide and 20 mm high and has straight lateral boundaries 

(Roscoe 1953). These lateral boundaries are frictionless, in contrast to the top and bottom 

boundaries, which are rough. The simple shear strain is applied by displacing the bottom 

boundary while simultaneously rotating the two rigid lateral boundaries. 

 For the NGI-type simple shear apparatus originally developed by Kjellman (1951) and 

modified by Bjerrum and Landva (1966), as shown Figure 1.8(b), a cylindrical soil specimen 

80 mm high and 20 mm in diameter is laterally confined by a wire-reinforced membrane 

between the rigid top and bottom platens. Simple shear strain can be imposed by 

displacement of the top boundary. The reinforced membrane is stiff enough to ensure one-

dimensional consolidation and also conserves a constant volume during shearing. 

 For the GDS-type simple shear apparatus depicted in Figure 1.8(c), whose design is 

close to that of the NGI-type simple shear apparatus, cylindrical specimens 70 mm high and 
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25 mm in diameter are confined in a soft butyl membrane 0.2 mm thick, itself placed against 

stacks of rigid circular Teflon-coated thin rings (1 mm each) having a 70 mm inner diameter 

that maintains a constant cross-sectional area but allows simple shear deformation. On both  

top and bottom faces of the specimen, the sand is in contact with rough sintered stainless steel 

plates to prevent any sliding between the pedestals and the specimen. 

 

 

Figure 1.8 Simple shear apparatus: (a) Cambridge type (Budhu and Britto 1987), (b) NGI 

type (Budhu and Britto 1987) and (c) GDS type 

1.3.1 Monotonic behaviour of simple shear test 

 The monotonic behaviour observed in simple shear tests has been widely studied over 

the decades. It basically shows  contractive/dilative behaviour, shear strength, fabric 

anisotropy and principal stress rotation. Figure 1.9 relates the results of undrained simple 

shear tests conducted by Sivathayalan (1994) on Fraser River sand at 200kPa normal stress 

with void ratio after consolidation varying from 0.836 to 0.902. Experimental results show 

that the decreasing void ratio promotes less contractive and more dilative behaviour. 

 

Figure 1.9 Monotonic undrained behaviour at various densities on Fraser River sand: (a) 

shear stress   versus shear stress , (b) effective normal stress n versus shear stress  

 Figure 1.10 shows drained simple shear tests conducted on Ottawa sand at 200kPa by 

Vaid et al. (1981), in which the relative density varied from 27% to 93%. Based on the 
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experimental results, the dilative behaviour is magnified with the relative densities from loose 

to dense sand; only very dense sand for which Dr=93% showed a drop in peak stress ratio at 

large strain. 

 Cole (1969) discussed the influences of relative density and normal stress level on 

dilation angle under the simple shear condition, as shown in Figure 1.11. Considering the 

example of Leighton Buzzard sand, the sand exhibits more dilation when the initial effective 

normal stress decreases and the relative density increases. 

 

Figure 1.10 Monotonic drained simple shear tests on Ottawa sand various densities: (a) shear 

stress   versus shear stress ratio n, (b) shear stress   versus volume strain v 

 

Figure 1.11 Dependence of dilation angle on relative density and stress level (Cole 1969) 

 In addition, for the undrained simple shear condition, the increase of the effective normal 

stress occurs after the stress path reaches the phase transformation state. Based on the 

behaviour observed in Fraser Delta sand, Vaid and Sivathayalan (1996) summarized 

uniformed phase transformation strength during undrained simple shear dilative behaviour. 

Figure 1.12(a) shows that for a given void ratio, the shear stress at phase transformation state 

decreases with an increase of the void ratio and increases with the initial normal stress level. 
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A unique relationship between void ratio e, shear stress at phase transformation state pt and 

initial normal stress n0 can be found when shear strength in the phase transformation state is 

normalized by the initial normal stress pt/n0 versus void ratio e, as shown in Figure 1.12(b). 

 

Figure 1.12 Variation of undrained strength at stress with void ratio and initial effect normal 

stress in simple shear (a) pt versus e; (a) pt/n0 versus e (Vaid and Sivathayalan 1996) 

1.3.2 Fabric anisotropy during principal stress rotation 

 Vaid and Sivathayalan (1996) showed that the shear stiffness during simple shear tests is 

much smaller than that of triaxial tests, using comparisons between triaxial and simple shear 

tests as shown in Figure 1.13(a). Unlike for triaxial tests, principal stress during the simple 

shear state rotates during the shear process, varying by ±45 degrees, as seen in Figure 1.13(b) 

(Roscoe 1970; Wood et al. 1979). In addition, fabric anisotropy has been widely recognized 

as affecting the strength of granular material (Oda 1972; Miura et al. 1986; Oda and 

Nakayama 1989; Yao and Kong 2011; Gao and Zhao 2012, 2017). Accordingly, such a 

degradation of shear stiffness can be explained primarily by anisotropy of stress during the 

principal stress rotation process, such as in the simple shearing stage. 

 

Figure 1.13 Tests of simple shear tests: (a) comparing to triaxial tests by Vaid and 

Sivathayalan (1996) and (b) principal stress rotation of simple shear tests by Wood et al. 

(1979) 
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1.3.3 Cyclic behaviour of simple shear test 

 The cyclic behaviour of sand from simple shear tests has been widely studied for 

decades in the form of strain accumulation, degradation of shear stiffness, damping ratio and 

cyclic liquefaction behaviours. From drained cyclic simple shear tests, Sriskandakumar (2004) 

presented cyclic strain accumulation behaviours in low cycles tests when considering the 

effect of relative density on Fraser River sand, as seen in Figure 1.14. This showed that for 

both loose and dense sand, contractive strain gradually accumulates with number of cycles, 

with loose sand corresponding to greater volumetric strain accumulation. Moreover, Nikitas 

et al. (2017) also carried out drained cyclic simple shear tests, considering the effect of cyclic 

shear stress ratio (CSR) while studying the degradation of shear stiffness with large numbers 

of cycles: greater CSR corresponds to greater strain accumulation and also greater 

degradation of shear stiffness. 

 

Figure 1.14 Cyclic drained simple shear test on Fraser River sand by Sriskandakumar (2004) 

The undrained cyclic simple shear test has been used primarily to study the liquefaction 

potential of a soil, including how the normal effective stress gradually degrades under cyclic 

loading. Large numbers of undrained simple shear tests have been conducted to reveal the 

effects of cyclic shear stress ratios (CSR=cyc/n0), relative densities and initial normal stress 

levels (n0) on normal stress degradation behaviour. Figure 1.15 presents a comparison of 

cyclic responses between different cyclic shear stress ratios during cyclic simple shear testing 

conducted on Fraser River sand by Sriskandakumar (2004) with initial conditions of 200kPa 

initial effective normal stress, zero average shear stress and 44% relative density. The results 

show that the number of cycles to liquefaction decrease with increases in cyclic stress ratio 

CSR level. 
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Figure 1.15 Undrained cyclic simple shear tests with different CSRs (a) n0 versus  on 

CSR=0.08 (b)  versus  on CSR=0.08; (c) n0 versus  on CSR=0.1 (b)  versus  on 

CSR=0.1 

Unlike the cyclic liquefaction feature in a symmetrical cyclic simple shear (e.g. average 

shear stress ave=0), a residual effective normal stress can be found under non-symmetrical 

cyclic simple shear (average shear stress ave≠0). Hence the average shear stress also plays an 

important role in determining cyclic response during simple shear test. Through stress-

controlled non-symmetrical cyclic simple shear tests, Wijewickreme et al. (2005) have 

presented cyclic normal stress degradation behaviour between different average shear stress 

ratios, comparing conditions of stress reversal and no stress reversal, with initial conditions of 

200kPa effective normal stress and 44% relative density. The results corresponded to the 

stress reversal condition seen in Figure 1.16(a-b), for which the effective normal stresses 

decreased to zero that is, a liquefied state. For the non-stress reversal condition, seen in 

Figure 1.16(c-d), effective normal stress decreased to residual stress. 
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(c) (d)

(a) (b)

(c) (d)
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Figure 1.16 Undrained non-symmetrical cyclic simple shear tests with different average shear 

stress, (a-b) with stress reversal cyclic loading (c-d) non-stress reversal cyclic loading 

1.3.4 Analytical models for cyclic response 

 One problem remains open: that of developing an analytical or empirical model able to 

to describe the basic cyclic response under various loading conditions. Lee and Albaisa (1974) 

have indicated that pore pressure generation (or mean effective pressure degradation) during 

dynamic tests falls within a band, as shown in Figure 1.17(a). Subsequently, Seed et al. (1975) 

developed an empirical model with reference to cyclic undrained triaxial results obtained on 

sands for purposes of predicting excess pore pressure ratio ru (=u/0), where u is the 

excess pore pressure and 0 the confining pressure. In the model proposed by Seed et al. 

(1975), the function of excess pore pressure ratio ru is composed of an empirically 

determined parameter   and the cyclic number ratio of the currently applied number of 

cycles (N) and the number of cycles to cause liquefaction (NL). 
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 Hence Seed et al.’s model defined a uniformed ‘‘S’’ shape for the generation of excess 

pore pressure, as shown in Figure 1.17(b), in which two empirical parameters (i.e., NL and ) 

can be determined from stress-controlled cyclic laboratory elementary tests. Because of the 

simplicity of the conceptual model used to analyse the generation of excess pore pressure, it 

has been widely used over the past decades (Mitchell and Dubin 1986; Polito et al. 2008; 

Chang et al. 2014; Mohtar et al. 2014; Porcino et al. 2015). However, for a given soil, the 

value of NL depends on void ratio e, cyclic shear stress ratio (CSR) and average shear stress 

ratio , which can lead to difficulty for calibrating its value. 

 

Figure 1.17 Rate of pore pressure generation: (a) Curves from Lee and Albaisa, 1974, and (b) 

Curves from Booker et al. (1976) 

 Ishibashi et al. (1977) proposed that the generation of excess pore pressure was a product 

of three functions: stress history H , cyclic number N  and stress intensity I , as shown in Eq. 

(3), 
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where *

NU  and *

1NU −
 are the residual pore pressure ratios of excess pore water pressure 

normalized by the initial effective confining pressure 0 at the Nth and (N–1)th cycles, 

respectively, where N is the number of cycles, N the shear stress at the Nth cycle and 1 3C −  

and   material parameters. 

 Figure 1.18 presents the calibration procedure used in the model proposed by Ishibashi et 

al., based on undrained triaxial tests on loose Ottawa sand under cyclic loading. The stress 

intensity function I related to parameter  can be obtained by fitting the slope between the 

increment of normalized pore pressure *

NU H and the shear stress ratio /0 which 

remains constant for each cycle as shown in Figure 1.17(a). The cyclic number function N -
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related parameter 1 3C − can be obtained by fitting the results of ( )*

NU H I   versus number of 

cycles (N), as shown in Figure 1.17(b). Four model parameters in the equation are material-

dependent. 

 Noting that density and stress level are not considered as variables. Sherif et al. (1978) 

and Ishibashi et al. (1982) re-evaluated the values for the four constants in hopes of 

accounting for variations in density, mean grain size, sand uniformity coefficient and 

angularity. Such an excess pore pressure prediction method has been widely used by a 

number of experimental studies (Sherif et al. 1978; Krishnaswamy and Thomas Isaac 1995; 

Georgiannou and Tsomokos 2008; Konstadinou and Georgiannou 2014). 

 

Figure 1.18 Parameters calibration of Ishibashi et al model: (a) calibration parameter  (b) 

calibration parameter C1-3 (after Ishibashi et al. 1977) 

Field and laboratory model pile tests have been performed to understand the evolution of 

shaft capacity during pile installation and during service conditions such as induce by cyclic 

axial loading (Jardine et al. 2000; Jardine et al. 2005; Yang et al. 2010; Jardine and Standing 

2012; Aghakouchak et al. 2015). Full-scale pile tests subjected to axial cyclic loading, 

performed by Jardine and Standing (2000), demonstrated that high-level cyclic loading can 

be highly detrimental to shaft capacity. In laboratory conditions, tests using the mini-ICP 

model pile installed in a pressurized calibration chamber (Tsuha et al. 2012a) have also 

provided key information to improve modelling of pile–soil interaction and the design rules 

of pile foundation. Based on their recent works on the degradation of shaft capacity in model 

pile tests, Jardine et al. (2005) have suggested an empirical “ABC” formulation, associated 

with the ICP design method, involving the shaft cyclic shear stress (cyc) normalized by the 

maximum static shear stress max,static and the number of cycles (N), 
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where n0 is the initial effective normal stress to the shaft and n the variation (degradation) 

of the normal effective stress. A, B and C are three constant empirical values that can be 

identified through back-analysis of pile tests or through calibration during laboratory 

experiments. However, the influence of the mean shear stress ave has not been introduced in 

the ABC model, the calibration is not robust and the degradation not limited. 

Overall, the initial average shear stress is a key factor for the cyclic resistance of sand 

(Vaid and Chern 1983; Vaid et al. 2001; Yang and Sze 2011; Yang and Pan 2017), which is 

usually missing in current studies. Hence, a more efficient approach should consider this 

factor. 

1.4 Constitutive modelling of granular materials 

 Owing to their complex behaviour, numerous constitutive models have been developed 

for sand. Three categories of models can be classified as follows: phenomenological models, 

multiscale models and discrete element models. 

1.4.1 Phenomenological models 

 According to the mechanical behaviour of granular materials, phenomenological models 

have been featured to describe the frictional behaviour (asymptotic relationship between the 

stress ratio and the shear strain), the contractive or dilative behaviour (shear-induced volume 

change) and the critical state behaviour (the unique ultimate state of a given material 

attainable in the p–q and the e–p planes for any initial state). Numerous constitutive models 

have been developed: (1) nonlinear hypoelastic models (Duncan and Chang, 1970), (2) 

incrementally nonlinear models (Darve and Labanieh 1982; Darve 1990), (3) hypoplastic 

models (Wu et al. 1996; Niemunis and Herle 1997; Mašín and Khalili 2012) and (4) 

elastoplastic models based on the critical state concept (Jefferies 1993; Yu 1998; Gajo and 

Wood 1999; Taiebat and Dafalias 2008; Yao et al. 2008; Yin et al. 2013). 

 These phenomenological models are commonly adopted in engineering practice for their 

efficiency in finite element analysis. However, successfully capturing all mechanical features 

usually requires more than 10 parameters of more or less complicated formulation. 

Accordingly, developing a simple model having a small number of parameters for application 

to engineering remains a challenge. 

1.4.2 Multi-scale models 

 In past decades, by comparison with the traditional continuum model, microscopic 

models have been increasingly used to explain soil mechanical behaviour from a multiscale 

approach. Such multiscale approaches build a constitutive relation on the specimen (material 

point) scale by taking microstructural information into account and linking the macro scale to 

the micro scale, which is still a challenge when studying micromechanical behaviour granular 
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materials. Chang et al. (1992) and Chang and Misra (1989) related incremental stress and 

strain to the contact forces and the contacts based on the contact fabric distribution. Building 

on this pioneering work, Chang and Hicher (2005) developed a micromechanics-based model 

considering interparticle forces and displacements that was itself enhanced by Yin et al. 

(2009; 2010b; 2014) with a view to accounting for stress reversal on a contact plane and for 

density state dependent dilatancy. 

1.4.3 Discrete element models  

 The discrete element method (DEM) introduced by Cundall and Strack (1979) has been 

widely used to investigate the behaviour of granular media. In the DEM model, rigid spheres 

are used to represent soil particles and rigid walls to represent the boundary condition. The 

basic calculation principle of the DEM model includes Newton’s second law and the force 

displacement law, using the former to determine the motion of each particle arising from the 

contact and body forces and using the latter to update the contact forces arising from the 

relative motion at each contact. 

 Many investigations have indicated that the DEM method is able to capture the basic 

features of granular materials: dilative/contractive stress, grain size distribution effect, fabric 

effect, cyclic stress stiffness degradation and strain accumulation (Iwashita and Oda 1998; 

Zhao and Evans 2009; Yimsiri and Soga 2010; Fu and Dafalias 2011; Li et al. 2014; Liu et al. 

2014). Moreover, because of the highly replicable behaviour of the elementary test in a 

laboratory by DEM method, stress inhomogeneity caused by specimen preparation and 

consolidation stages, can also be well studied something otherwise difficult to investigate in 

the laboratory (Dabeet 2014; Bernhardt and Biscontin 2016; Asadzadeh and Soroush 2017; 

Zhu et al. 2017). However, the number of particles in most DEM simulations is very limited 

and is thus far from the real physical model owing to considerations of computational 

efficiency; thus the extension of the DEM to problems at real-world scale is still questionable. 

 In fact, the phenomenological models have been widely adopted for engineering 

application (Zhang et al. 2013; Kouretzis et al. 2014; Jin et al. 2017). Yin et al (2013) 

presented a framework of critical-state based model, which was developed based on the 

Mohr-Coulomb model by implementing the critical state concept (Jin et al. 2016c; Yin et al. 

2016) with non-linear elasticity, non-linear plastic hardening, and a simplified three-

dimensional strength criterion. The state-dependent peak strength and stress-dilatancy 

(contraction or dilation) are well captured by the model (Jin et al. 2017). Despite this critical-

state framework have been widely used, the inherent anisotropy and the cyclic effect still 

need to be further considered, especially under the prerequisites of without increasing the 

model parameters and ease to use. 
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1.5 Thesis organization 

 As it is evident from the foregoing discussion, although experimental investigations of 

the simple shear tests have been widely studied, some limitations remain. In this thesis, 

simple shear tests were performed on Fontainebleau sand, with the experimental results 

analysed within the critical state soil mechanics framework. This thesis comprises following 

chapters: 

1) Presents the simple critical state–based model (SIMSAND) and its finite element 

implementation 

2) Enhances the SIMSAND model by considering principal stress rotation and 

applying it to study stress inhomogeneity in the simple shear test 

3) Estimates normal effective stress degradation in sand during undrained cyclic 

simple shear tests 

4) Estimates volumetric strain accumulation in sand during drained cyclic simple shear 

tests 

5) Suggests a cyclic SIMSAND model accounting for the experimental results 

obtained from Fontainebleau sand during cyclic triaxial to simple shear tests, and 

simulates pile penetration and cyclic tests using FE code in conjunction with the 

enhanced cyclic SIMSAND model. 

6) Summarizes the main conclusions of the research study while proposing 

recommendations for further research. 
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 A straightforward procedure of determining parameters of 

SIMSAND model 

2.1 Introduction 

 Mechanical behaviour of sand has been widely investigated by numerous researchers 

during the last decades, from which various constitutive models have been proposed. To 

unify the modelling of sand with different densities, the critical state concept is necessarily 

adopted, such as the classical elasto-plasticity (Duncan and Chang 1970; Jefferies 1993; Gajo 

and Muir Wood 1999; Taiebat and Dafalias 2008; Yin et al. 2013; Yin et al. 2016), 

hypoplastic models (Kolymbas 1991; Wu and Bauer 1993; Wu et al. 1996), micromechanical 

models (Chang et al. 2010; Yin et al. 2010a; Yin and Chang 2013; Yin et al. 2014). However, 

the incorporation of the critical state increases the number of model parameters with high 

relevance in terms of parameters sensitivity. Then, these parameters are difficult to be 

measured from laboratory tests in a direct way. Therefore, an efficient and effective way is 

recommended for applying these models to engineering practice. 

 In general, two main methods have been used for determining those directly 

immeasurable parameters: the trial and error method and the inverse analysis method. In the 

former method, numerous values of parameters need to be tried by conducting a lot of 

simulations, until obtaining the apparent best fit to experiment results. It’s a time-consuming 

procedure and mainly depends on the knowledge of operators. In the latter one, the optimal 

parameters are usually inversely analysed through a larger number of simulations with 

computational demand. 

 Different from above methods, to reduce the computational demand a straightforward 

procedure for determining model parameters is proposed in this chapter. In the following 

sections, a simple critical-state based sand model with a nonlinear critical state line is 

introduced first. Then, a straightforward procedure for determining parameters is proposed 

based on the derivation of constitutive equations with the recommendation of some 

measurements to be adopted. Experimental tests on Toyoura sand are selected as an example 

for clarifying the use of the procedure and the validation. Furthermore, the model is 

implemented into a finite element code, and numerical modelling of a series of footing tests is 

performed using the straightforwardly determined parameters. The proposed procedure is 

validated as an efficient and reliable bridge from constitutive modelling to finite element 

analysis. 
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2.2 Simple critical-state based sand model 

 The simple critical-state based sand model (marked as SIMSAND) is proposed based on 

experimental observations and existing modelling methods. According to the elasto-plasticity 

theory, the total strain rate is conventionally composed of the elastic and plastic strain rates: 

 
e p

ij ij ij  = +   (2-1) 

where ij  denotes the (i,j) component of the total strain rate tensor, and the superscripts e and 

p stand, respectively, for the elastic and plastic components. 

2.2.1 Elastic behaviour 

 For the elastic part of the model, the isotropic elasticity assumption is adopted, and the 

increments can be calculated by the following law: 
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where K and G are the elastic bulk and shear moduli, adopting the same form proposed by 

(Richart et al. 1970) which implies a constant Poisson’s ratio : 
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where K0 and G0 are reference values of bulk modulus and shear modulus;  is a constant 

parameter controlling the nonlinearity of confining stress effect; e is void ratio; p' is the mean 

effective stress (p′=′ii/3); pat is the atmospheric pressure used as reference pressure (pat = 

101.325 kPa).  

Since the isotropic compression test can be easily conducted and can also be an initial 

stage of shear test, it is recommended to use K0 and  as input parameters with G0=3K0(1-

2)/2(1+). 

2.2.2 Plastic behaviour 

 A shear sliding yield surface, as used in previous models (Vermeer, 1978; Pietruszczak 

and Mroz, 1980; Jefferies, 1993; Gajo and Muir Wood, 1999; Yin et al., 2013), is adopted, as 

shown in Figure 2.1: 
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where f is the yield function; q is the deviatoric stress ( 23 3 2ij ijq J s s= = ); kp relates to 

the plastic shear modulus controlling the initial slope of the curve of ' p

d
q p − ; Mp is the 

stress ratio corresponding to the peak strength in p'-q space with Mp =6sin(p)/(3- sin(p)) in 

compression;  p

d is the deviatoric plastic strain ( 2 3p

d ij ije e = ).  

The plastic strain can be calculated by the flow rule: 

 
p

ij

ij

g
d 




=


  (2-5) 

where g is the plastic potential function; d is the plastic multiplier depending on the stress 

rate and the plastic hardening law. 

 

Figure 2.1 Principle of SIMSAND model 

In order to take into account the dilation or contraction behaviour during shear sliding, a 

non-associated flow rule is introduced, which is expressed as follows: 
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where Mpt is the stress ratio corresponding to the phase transformation line (PTL) in p'-q 

space with Mpt =6sin(pt)/(3-sin(pt)) calculated from the phase transformation friction angle, 

pt. Eq. (2-7) implies the following stress-dilatancy relationship: 
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where Ad is the stress-dilatancy parameter controlling the evolution of volumetric strain v 

with axial strain a or deviatoric strain d during shearing. 

2.2.3 Critical state and interlocking effect 

 According to the critical state concept and experimental observations, a simple nonlinear 

critical state line proposed by Li and Wang (1998) to calculate the critical state void ratio ec 

was adopted as follows: 

 c ref

at

p
e e

p




 

= −  
 

  (2-8) 

where eref is a reference void ratio corresponding to the void ratio at p′=0 for simplicity,  

and    are constants controlling the nonlinear slope of the CSL. However, for high stress 

level this equation cannot guarantee the positiveness of the critical void ratio. A slight 

modification was thus made in this chapter using the logarithmic scale of void ratio instead of 

normal scale, 
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The interlocking effect suggested by Been and Jefferies (1985) can be introduced as 

follows: 

 ( ) ( )exp  ,  expp p c pt d cM M n e e M M n e e = − − = −      (2-10) 

where np and nd are model interlocking parameters, which controls the degree of interlocking 

by neighbouring particles according to (Yin et al. 2010a; Yin and Chang 2013); M is the 

slope of critical state line in p'-q space (with Mc=6sinc/(3-sinc) in triaxial compression). 

As shown in Figure 2.1, Eq. (2-10) implies that in a loose structure with e > ec, the phase 

transformation stress ratio Mpt is bigger than M, and the peak stress ratio Mp is smaller than M, 

which allows the loose structure to be contractive during deviatoric loading with a strain-

hardening strength. In a dense structure with e < ec, the phase transformation stress ratio Mpt 

is smaller than M , and the peak stress ratio Mp is bigger than M, which allows the dense 

structure to be first contractive and then dilative during deviatoric loading with a peak 

strength followed by a ductile stage. For both loose and dense structures, when the stress state 

reaches the critical state line, the void ratio e becomes equal to the critical void ratio ec, then 

zero dilation or contraction takes place. Thus, the constitutive equations guarantee that 

stresses and void ratio reach simultaneously the critical state in the p'-q-e space.  
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In order to interpolate Mp and Mpt between their values for compression and those for 

extension by means of the Lode’s angle  (Sheng et al. 2000), the following expression for M 

is proposed 
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where c = (3-sinc)/(3+sinc), assuming the same critical state friction angle for different 

Lode’s angles. The Lode’s angle is expressed as ( )1 3/ 2

3 26 sin 3 3 2 3 6J J
−

−   = −   . J2 

and J3 are the second and third invariants of the deviatoric stress tensor, given by J2 = sijsij/2, 

J3 = sijsjkski/3. Eq. (2-10) combined with Eq. (2-11) leads to different values of Mp and Mpt for 

different values of Lode’s angle assuming the same friction angle. 

The plastic multiplier d can be calculated in a conventional way according to plasticity: 
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  (2-12) 

Combining Eq.s (2-1) to (2-12), the stress-strain relationship can be solved for test 

simulations. 

Major assumptions inherent in the constitutive law are as follows: the total strain 

decomposed in elastic and plastic strains, hyperbolic hardening of stress ratio versus 

deviatoric plastic strain, only elastic behaviour in isotropic compression, non-associated flow 

rule and the concept of critical state. Note that the stress reversal technique for describing the 

cyclic behaviour of sand by Yin et al. (2013) was not included in this study, since the current 

emphasis focuses on the determination of parameters based on tests under monotonic loading. 

2.2.4 Summary of model parameters 

The nonlinear critical state line based SIMSAND model requires calibrating eleven 

parameters, which can be divided into three groups based on their physical meaning as 

follows:(1) elasticity related parameters: K0,  and  ;(2) critical state related parameters: c, 

eref,   and ; (3) plasticity and interlocking parameters:  Ad, kp, np and nd. 

Plasticity interlocking parameters were usually determined by curve fitting that requires a 

good understanding of constitutive modelling and trial-error procedure (Jefferies 1993; 

Manzari and Dafalias 1997; Gajo and Muir Wood 1999). 
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2.3 Procedure for determining parameters 

 For introducing the straightforward method to determine the parameters of SIMSAND 

model, a series of synthetic tests including isotropic compression test and drained triaxial 

tests were generated by the SIMSAND model using a set of given model parameters (see 

Table 2.1 and Figure 2.2). The main purpose of using the synthetic test data is to illustrate the 

proposed determination procedure. The ideal synthetic test data used in the proposed 

procedure can reduce the effect of test errors so that the reasonability and reliability of the 

proposed method can be theoretically demonstrated. Then the real test data will be used to 

further demonstrate the feasibility of the proposed procedure. Only one isotropic compression 

test and three drained triaxial tests with different confining stresses p'0 and different initial 

void ratios e0 are needed for the back calculation procedure.  

Table 2.1 Values of model parameters for generating test data 

Parameters K0   c eref    kp Ad np nd 

Example 100 0.6 0.25 30 0.875 0.085 0.229 0.0015 1.2 2 1.5 

 

 

Figure 2.2 Synthetic data using a set of given model parameters for isotropic compression test 

and conventional drained triaxial tests: (a) void ratio versus mean effective stress, (b) stress 
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ratio versus axial strain, (c) mean effective stress and deviatoric stress and (d) void ratio 

versus mean effective stress 

 The proposed determination procedure is divided into three steps, as shown in the flow 

chart of Figure 2.3. First, the elasticity parameters are determined using the isotropic 

compression test data. Then, the critical state parameters can be determined based on at least 

three drained triaxial tests. Finally, the interlocking related parameters can be determined 

based on one drained triaxial test. The details of the procedure are presented in following 

sections. 

 

Figure 2.3 Procedure of proposed straightforward method from (a) elasticity related 

parameters, (b) critical state related parameters to (c) plasticity interlocking related 

parameters 

2.3.1 Determination of the elasticity related parameters 

 According to Eq. (2-3), for any point on the isotropic compression curve, the relationship 

between K, p′ and e is unique, where p′ and e are measured in the experimental curves, and 

bulk modulus of each point are calibrated by the Eq. (2-13).  
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Since two parameters K0 and  must be determined, two equations corresponding to 

different points on the isotropic compression curve are necessary to form an equation set. For 
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compression curve, as shown in Figure 2.4. Then, the corresponding equation set are 

expressed in Eq. (2-14).  
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Thus, the two elasticity parameters can be solved. Details can be found in MATLAB  

CODE-1 in Appendix A. In order to obtain a reliable set of parameters, multiple calculations 

with different combinations of two different points on the compression curve are needed to 

give an average result. 

 

Figure 2.4 New interpreted curves from isotropic compression curve in (a) Elastic bulk 

moduli versus mean effective stress and (b) Elastic bulk moduli versus void ratio 
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were obtained. Only a slight difference between determined values and objective values was 

found, which demonstrates that the proposed method to determine the elasticity parameters is 

feasible.  

For G0, which can be calculated according to G0=3K0(1-2)/2(1+), the Poisson’s ratio 
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well accepted one-dimensional compression condition according to Jacky’s formula (K0=1-
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where G/K=1/(2) with ( ) ( )( )=3sin 3 2sinc c  − .  

 Note that in the proposed procedure =0.2 was first set as default value, and was updated 

by the Eq. (2-15) when the friction angle was measured later on. 

Table 2.2 Calibration of elasticity related parameters K0 and ζ based on synthetic data 

No p' (A) /kPa e(A) p' (B) /kPa e(B) ζ K0 

1 100 0.746 500 0.732 0.607 96.81 

2 100 0.746 900 0.725 0.603 96.81 

3 500 0.732 900 0.725 0.602 99.01 

The average value 0.604 97.56 

2.3.2 Determination of critical state related parameters 

For determining the critical state parameters, the conventional approach was adopted. 

Based on the results of drained triaxial tests shown in Figure 2.2 (c), the slope of the critical 

state line Mc =1.20 can be measured from the p′-q space, and the friction angle c=30° was 

then obtained by Eq. (2-16). Once c is obtained, the Poisson’s ratio  is updated using 

Eq.(2-15) Normally a 20% strain is considered as the test reached the critical state (Biarez & 

Hicher 1994). If the strain during the test ranges from 10% to 20%, it is suggested to extend 

the data to the 20% strain by the quadratic multinomial method. Note that, for dense sand, the 

deformation ceases to be homogeneous at a certain strain, and a localisation of large 

deformations occurs. Such tests will give a false value of the friction angle c corresponding 

to perfect plasticity. Therefore, dense samples are strongly not recommended for the critical 

state related parameters determination. 
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For non-linear CSL, three critical state points are needed. The MATLAB data fitting 

function “lsqcurvefit” (to solve nonlinear curve-fitting or data-fitting problems based on 

least-squares) can be used to solve three critical state parameters. Details can be found in 

MATLAB CODE-2 in Appendix A. By this way, the parameters eref = 0.875,  = 0.085 and  

= 0.229  were obtained by fitting the results of triaxial tests at critical state in the e-lnp' space, 

as shown in Figure 2.2 (d). It can be seen all the obtained values of critical state parameters 

are similar to the objective values. 

Note that for dense sand, shear bands were usually formed, which induces  non-

uniformity of the specimen, which also implies that the data can no longer be used for 
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constitutive interpretation. Tests on dense sand are not recommended  to  back-calculate the 

related mechanical parameters of soil due to the strain localization. For loose and medium 

dense materials, the influence of shear banding is considered to be slight up to 20% of axial 

strain, and the mechanical response of the sample can be widely accepted as the elementary 

behaviour of the soil (Biarez and Hicher 1994). As a result, triaxial tests on loose and 

medium dense samples are strongly recommended for parameters determination.  

2.3.3 Determination of plasticity interlocking related parameters 

 This section presents the procedure to determine plasticity interlocking related 

parameters (see Figure 2.3 (c)). According to Eq. (2-4), a relationship between stress ratio 

(q/p′) and deviatoric plastic strain p

d  is given. 

For a given triaxial test result with q/p′-a and v-a, the 
v

p and p

d  should be first 

calculated and accumulated by Eq. (2-17) as follows,  

 =    and   
3

p e p e

v v v v d d d d

p q

K G
       


= − − = − = −   (2-17) 

where K and G were obtained by Eq. (2-3) in the previous section. Details can be found in 

MATLAB CODE-3 in Appendix A. 

Then, the curve q/p′- p

d  can be obtained, as shown in Figure 2.5 (a). Because of two 

unknown parameters (kp and np) involved in Eq. (2-4) with Eq. (2-10), a system of equations 

including at least two equations on different points from the q/p′- p

d  curve (e.g. point A and 

point B) is necessary to solve the hyperbolic-type nonlinear equation,  
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  (2-18) 

where ec can be obtained based on Eq. (2-8) or (2-9) in the second step. Then, using 

MATLAB, the roots of (kp and np) in Eq. (2-18) can be easily solved by the function “fzero” 

(to solve the root of nonlinear function). Details can be found in MATLAB CODE-4 in 

Appendix A. 

Similarly, for the other two parameters Ad and nd accounting for contractive or dilative 

behaviour, the relationship between p p

v d  and q p was obtained based on Eq. (2-7), as 

shown in Figure 2.5 (b). Then an equation set involving two stress-dilatancy related 

parameters can be formed as follows: 
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  (2-19) 

Again, by the MATLAB function “fzero”, Eq. (2-19) can be also easily solved. Two 

parameters Ad and nd were thus directly determined. Details can be found in MATLAB 

CODE-4 in Appendix A. 

 

Figure 2.5 Increments of plastic strain of drained triaxial tests: (a) stress ratio versus 

deviatoric plastic strain; (b) ) stress ratio versus ratio of plastic strain increment 

It should be pointed out that the key issue for the identification procedure is the position 

of selected points on the curves. When the selected point is close to the critical state, the ratio 

e-ec is close to 0 and the stress ratio q/p′ is close to Mc. Then the value of 

( ) ( )c d cexpM n e e q p− −    is close to zero, which would result in calculation error. 

Therefore, the value of Ad is sensitive to the position of selected points used in the calculation. 

For determining the parameters Ad and nd, the selected points before reaching the critical state 

are suggested for obtaining reasonable and reliable parameters. Moreover, in the real testing 

on dense sand, the deformation ceases to be homogeneous at a certain strain (closed to 2% ~ 

3% strain), and a localisation of large deformations occurs. Such tests will give false values 

of parameters corresponding to perfect plasticity. Therefore, the available date for dense sand 

is ranged in the 3% strain. 

To obtain more accurate and reliable parameters, multiple calculations with different 

combinations of two selected points on the test curve are needed to give an average value of 

parameters. These points are suggested to be selected in the range of 3% strain, because of 

that over 3% strain will lead to inhomogeneity of the sample in the laboratory testing, 

especially for dense sand. Based on many simulations in this way, three combinations 

involving two points corresponding to different strain levels were estimated to be enough and 

0 10 20 30
-0.06

-0.03

0

0.03

0.06


a
 / %

d
 

vp
 /

 %

 

 

0 10 20 30
0

0.04

0.08

0.12

0.16

d
a
 / %

d
 

dp
 /

 %

 

 

0 10 20 30
0

0.5

1

1.5

2


d

p
 / %

q
/p

' 

-1 0 1 2 3
0

0.5

1

1.5

2

 q
/p

'

d
v

p /d
d

p /
p p

v d 

0 0' 100 kPa, 0.65p e= =

0 0' 200 kPa, 0.75p e= =

0 0' 500 kPa, 0.85p e= =

critical state point

0 0' 500 kPa, 0.85p e= =

0 0' 200 kPa, 0.75p e= =

0 0' 100 kPa, 0.65p e= =

Drained triaxial Drained triaxial

(a) (b)/ %
p

d

0 0' 100 kPa, 0.65p e= =

0 0' 200 kPa, 0.75p e= =
0 0' 400 kPa, 0.85p e= =

0 0' 100 kPa, 0.65p e= =

0 0' 200 kPa, 0.75p e= =

0 0' 400 kPa, 0.85p e= =

Experiments 

Interpolated data

Experiments 

Interpolated data

/% /%

(a) (b)



30 

 

as simple as possible in the calculation for one test. Then the same calculations are suggested 

on the other two tests with different confining stresses and void ratios. Table 2.3 shows the 

calculated interlocking related parameters for each combined of selected points and each 

selected triaxial test. Figure 2.6 presents the comparisons between determined parameters and 

objective values, which demonstrates a good agreement. Using the average values of 

interlocking related parameters combined with the elasticity and critical state parameters 

determined previously, the tests for calibration were simulated, as shown in Figure 2.7, 

demonstrating the accuracy and reliability of the proposed determination procedure.  

Note that, for experimental curves usually exhibiting scattering, a primary procedure to 

smooth these curves is necessary, for instance using MATLAB function “smooth” to polish 

the experimental data.  

Table 2.3 Calibration of plasticity interlocking related parameters based on synthetic data 

a % p'0=100 kPa, e0=0.65 p'0=300 kPa, e0=0.75 p'0=400 kPa, e0=0.85 

A B np kp nd Ad np kp nd Ad np kp nd Ad 

1 1.5 1.99 0.0015 1.67 1.09 2.07 0.0018 1.59 1.25 2.15 0.0013 1.27 1.29 

1 2 1.99 0.0015 1.31 1.08 2.04 0.0018 1.59 1.25 2.11 0.0013 1.13 1.29 

1.5 2 1.99 0.0015 1.16 1.05 2.38 0.0017 1.59 1.25 2.08 0.0013 1.58 1.28 

average 1.99 0.0015 1.38 1.07 2.16 0.0018 1.59 1.25 2.11 0.0013 1.33 1.29 

 

 

Figure 2.6 Comparison between original given and calibrated parameters 
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Figure 2.7 Comparison between synthetic results and simulated results by calibrated 

parameters: (a) stress ratio versus axial strain; (b) volumetric strain versus axial strain 

2.4 Validation by real laboratory tests 

 For evaluating the proposed straightforward approach, a series of conventional test 

results including those from an isotropic compression test and drained triaxial tests performed 

on Toyoura sand by (Miura et al. 1984) were selected to conduct the parameter determination 

with the proposed method. Figure 2.8 shows the experimental results of selected isotropic 

compression test and drained triaxial tests.  

 First, based on the result of isotropic compression test, the change of bulk moduli was 

calculated by Eq. (2-13) using MATLAB CODE-1, as shown in Figure 2.9. Three 

calculations involving different points corresponding to different stress levels on isotropic 

compression curve were conducted. Table 2.4 presents the determined results with the 

average values of K0=130 and ζ=0.52. Note that if the experimental points are not dense 

enough to provide satisfying points in the calculation, the interpolation of experimental curve 

is necessary to re-generate an experimental curve with more points, as shown in Figure 2.9. 
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Figure 2.8 Experimental results of isotropic compression and conventional drained triaxial 

tests on Toyoura sand for calibrating parameters: (a) void ratio versus mean effective stress, 

(b) stress ratio versus axial strain, (c) mean effective stress and deviatoric stress and (d) void 

ratio versus mean effective stress 

Table 2.4 Calibration of model parameters K0 and ζ for Toyoura sand 

No p' (A) /kPa p' (B) /kPa ζ (average) K0(average) 

1 300 600 0.49 138 

2 300 900 0.52 134 

3 600 900 0.57 120 

The average value 0.52 130 

 

 

Figure 2.9 Interpreted results from isotropic compression curves of Toyoura sand for 

calibrating parameters: (a) void ratio versus mean effective stress and (b) Elastic bulk moduli 

versus mean effective stress 
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Based on experimental results of three drained triaxial tests, the slope of the critical state 

line Mc=1.27 and corresponding friction angle c=31.8° were directly measured from the p′-q 

space. The parameters eref=0.937, =0.039 and =0.365 were obtained using MATLAB 

CODE-2 based on the e-lnp′ space. Figure 2.8 (c and d) shows the results of the calibration 

for critical state line parameters on Toyoura sand. 

Finally, according to the procedure for determining interlocking related parameters, the 

drained triaxial test (p'0=100 kPa, e0=0.831 shown in Figure. 2.10) was selected to perform 

the calibration using MATLAB CODE-3 and 4. Using Eq. (2-18), the parameters kp and np 

were easily obtained by the code and are presented in Table 2.5. Similarly, based on Eq. 

(2-19), the dilatancy related parameters Ad and nd were also determined by the code, 

presented in Table 2.5. The average value of four interlocking related parameters based on 

three drained tests (p'0=100 kPa, e0=0.831), (p'0=100 kPa, e0=0.917) and (p'0=500 kPa, 

e0=0.960) were finally determined. 

All the determined parameters of the model by the proposed method are summarized in 

Table 2.6. Besides the test data for calibration, another three drained and six undrained 

triaxial tests performed on isotropically consolidated Toyoura sand were simulated by 

SIMSAND model using the determined parameters for the validation. Figures 2.11-2.13 

present all the simulations generally in agreement with experimental data. All the 

comparisons demonstrate the determined parameters by the proposed approach are reasonable 

and reliable.  

 

Figure 2.10 Increments of plastic strain of drained triaxial tests on Toyoura sand: (a) stress 

ratio versus deviatoric plastic strain; (b) ) stress ratio versus ratio of plastic strain increment 
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Table 2.5 Calibration of model parameter Ad, nd, kp and np for Toyoura sand 

Tests a (A) a (B) np kp nd Ad 

p0=100kPa, 

e0=0.831 

1 2 1.35 0.0026 1.37 0.57 

1 3 1.38 0.0032 1.57 0.63 

2 3 1.43 0.0032 1.98 0.83 

p0=100kPa, 

e0=0.917 

1 2 5.56 0.0036 5.96 0.59 

1 3 5.67 0.0035 5.66 0.89 

2 3 5.83 0.0033 - - 

p0=500kPa, 

e0=0.960 

1 2 3.99 0.0045 1.55 0.94 

1 3 3.44 0.0046 1.56 0.91 

2 3 2.78 0.0056 1.57 0.85 

Average value of parameters 3.49 0.0038 2.65 0.78 

 

Table 2.6 Summary of model parameters by back calculation procedure for Toyoura sand  

Parameters K0 G0  c eref    kp Ad np nd 

Toyoura sand 130 78 0.52 31.8 0.937 0.039 0.365 0.0038 0.78 3.49 2.65 

 
Figure 2.11 Comparison between experiments and simulations for six drained triaxial tests on 

Toyoura sand under confining stresses of 100 kPa and 500 kPa plotted in void ratio versus 

mean effective stress space 
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Figure 2.12 Comparison between experiments and simulations for six drained triaxial tests on 

Toyoura sand under confining stresses of 100 kPa and 500 kPa plotted in (a) and (c) 

deviatoric stress versus axial strain, (b) and (d) void ratio versus axial strain 
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Figure 2.13 Comparison between experiments and simulations of undrained triaxial tests on 

Toyoura sand under confining stresses of 100 kPa and 1000 kPa plotted in (a) and (c) 

deviatoric stress versus axial strain, (b) and (d) stress path in mean effective stress and 

deviatoric stress 

2.5 Implementation into a finite element code 

2.5.1 Explicit finite element method 

 The explicit solution method in the commercial FE code ABAQUS can be used to 

overcome the mesh distortion problems inherent in large deformation analysis, such as the 

simulation of simple shearing or pile penetrating performed in this study. The explicit 

solution method, with the code ABAQUS, was thus adopted. The numerical scheme is 

presented in Figure 2.14 with a brief introduction, as follows:  

 

Figure 2.14  Flow chart of explicit finite element analysis based on ABAQUS/Explicit 

 First, the equilibrium condition is written with the balance of inertial and external force 
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where M is the mass matrix, P is the applied external force vector and I is the internal force 

vector. 

 Accelerations and velocities at a particular point, caused by external loads, are assumed 

to be constant during a time increment. The equations of motion for the body are then 

integrated using the explicit time-central difference integration rule, which is expressed as 

follows: 

  ( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( )

2 2

2

2
t t

t

t t t

tt t

t t t t t t

t t
u u u

u u t u
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+

+ −

+ + +

 + 
= +


 = + 


  (2-21) 

where u is the displacement and the subscript t refers to the time in an explicit dynamic step; 

u  is the velocity; and t  is the increment of time. For the stability of calculation, the time 

increment t, which is smaller than a limited value, is recommended as min dt L c  , where 

Lmin is the smallest element dimension of the entire mesh; ( )2dc = +    with Lamé 

elastic constants  and ; and  is the material density. 

 Then, in our study, the incremental displacements ( ( ) ( )2
tt t t

u t u
+ +

 =  ) were used to 

calculate the incremental strain through compatibility equations, which would be called on by 

the constitutive model to update stresses, and then inertial forces, up to a new equilibrium 

condition. More information about the solution can be found in the manual for 

ABAQUS/Explicit (Hibbitt et al. 2001). 

The enhanced SIMSAND model was implemented into ABAQUS/Explicit as a user-

defined material model via the user material subroutine VUMAT. The procedure for model 

implementation followed that of (Hibbitt et al. 2001). In ABAQUS/Explicit, combined with 

VUMAT, the strain increment on the element   at t was initially solved by ABAQUS 

using the presented explicit time-central-differential integration method. Then, the stress 

increment  was updated through VUMAT using the solved   (described as the stress 

integration in the following paragraphs).  

For the stress integration, the cutting plane algorithm, proposed by Ortiz and Simo 

(1986), was adopted. According to the flow rule, the plastic multiplier d is the key for 

obtaining the plastic strain. The direct method for calculating d is explicit; however, the 

explicit solution needs a very small incremental step to ensure the accuracy of calculation. 

The algorithm presented here is semi-implicit, which can yield an accurate result with a 

bigger step size. Thus, by using this algorithm, the efficiency and effectiveness of the 

calculation can be improved. 
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According to (Ortiz and Simo 1986), d can be expressed as follows: 

  
( )*
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* *
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f d
d

f g f g
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

    

− +
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    
− +

    

  (2-22) 

where f is the yield function; g is the potential plastic function; D is the elastic matrix; * is 

the hardening variable; and  p is the plastic strain. 

 Figure 2.15 shows the schematic diagram of a general cutting plane algorithm. The task 

contains the calculation procedure of the stress increment, corresponding to a given strain 

increment. First, a strain increment  is assumed to be elastic and loaded based on the stress 

point n. Then, the value of yield function f, corresponding to the trial stress point 1n


+ , is 

calculated. If the value of f is smaller than zero, this indicates that the loading state is in the 

elastic domain. Therefore, the stress is updated according to the generalised Hooke’s law. 

Otherwise, the loading state is transited from the elastic to the elastoplastic domain. The 

updated stress  and the hardening parameter  are then calculated using the following 

equations:  

  
*

* *

*p

g
Dd

g
d

  



  

 


= − 


  = +

  

  (2-23) 

where d is calculated according to Eq. (2-22). The updated terms are then used to update f 

along the return path shown in Figure 2.15, until the loop converges when f is smaller than 

the tolerance error (which is 10-7 in this study). The final stress point, with the hardening 

parameter, is obtained as n+1, which is the real stress point corresponding to the strain 

increment . 

 

Figure 2.15  Schematic diagram of a general cutting plane algorithm 
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 Using the implicit integration scheme mentioned above, the trial stress is modified under 

the consideration of plastic strains occurring, until the convergence is reached. The flow chart 

of the updating procedure is shown in Figure 2.16. Details of derivatives for the solutions 

described here are summarized in Appendix. Note that in the explicit scheme of ABAQUS, 

the strain increment is already small, because it skipped the over-relaxation of stress inside 

the yield surfaces. 

 

Figure 2.16 Flow chart of the cutting plane algorithm 

The derivatives for the numerical integration described in the chapter are briefly 

presented for numerical analyses. The derivative of yield function on the increment of stress 

vector can be expressed as  
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The derivative of yield function on the harden parameters can be expressed as  
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The derivative of hardening parameters on plastic strain can be expressed as  
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The derivative of potential function on increment of stress vector can be expressed as  
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2.5.2 Evaluation by modelling of footings 

 A series of circular footing model tests on Toyoura sand were performed by Tomita et al. 

(2012). The footings have a same circular cross section with a diameter B = 20 mm and a 

height of 80 mm. Three footing tests were performed on Toyoura sand with three different 

relative densities (e0 = 0.67, 0.71 and 0.85). Note that the model tests adopted herein are to 

highlight the reasonability of the parameters determined by the proposed procedure. In terms 

of extrapolating results from the model tests to the behaviour of prototype footings, the scale 

effects of the geometric and stress should be considered (Fellenius and Altaee, 1994). 

Furthermore, the effect of density (initial void ratio) should also be considered. The effects of 

density and stress-scale on extrapolating results from the model tests to the behaviour of 

prototype footings can be simulated through employing the presented SIMSAND model. The 

effect of the geometric scale can also be simulated by using the FEM method to simulate the 

real scale of prototype footing. 

The axisymmetric finite-element model with 5628 elements for 20B large model was 

generated, as shown in Figure 2.17 with the same dimension as model tests. Each FE element 

has four nodes axisymmetric with one reduced integration point (named as CAX4R element 

in ABAQUS). The footing structure was modelled using rigid body since its deformation is 

negligible comparing to soil. According to Tomita et al. (2012), the initial stress condition 

before loading is K0 condition, and the value of K0 was set to be 0.48 according to Jaky’s 

formula. The contact between footing structure and soil is of surface-to-surface type with its 

interface described by the classical Coulomb friction law (the friction coefficient 

 = tan(/2) =0.8). The parameters of Toyoura sand determined previously were adopted 

here for all simulations. 
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Figure 2.17 Finite element model for footing tests by ABAQUS 

Figure 2.18 shows the comparisons of “qb-s” curves between measurements and 

simulations for footing tests, where qb represents the bearing load and s is the surface 

settlement. All the comparisons demonstrate that the predictions of bearing capacity by the 

model using determined parameters of Toyoura sand by the proposed method are in a good 

agreement with the measurements. Furthermore, the simulated distributions of mean effective 

stress by the nonlinear CSL based SIMSAND model for three tests with different initial void 

ratios are plotted in Figure 2.19. Similar distribution shape can be found in three simulations. 

But a general lower stress level was obtained for the test of bigger void ratio, which reveals 

the smaller bearing capacity achieved in Figure 2.18 since the strength of sand is pressure 

dependent.  

 

Figure 2.18 Comparison between measurements and predictions of bearing load versus 

settlement for three footing tests in sand with three different initial void ratios 
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Figure 2.19 Simulated mean effective stress field of three footings at the settlement of 2.8 

mm for the initial void ratio of: (a) e0=0.67; (b) e0=0.71; (c) e0=0.81 

2.6 Conclusion 

 A straightforward method for determining parameters was proposed in this chapter. The 

parameters were analysed based on a simple critical-state based sand model. The whole 

procedure of parameters determination can be divided into three steps. First, the elasticity 

related parameters K0,  and  were determined by isotropic compression test. Then, the 

critical state line related parameters c, eref and   were directly measured based on triaxial 

tests. Finally, a series of equations for calculating the plasticity interlocking parameters Ad, nd, 

kp and np were developed. Based on these equations, the plasticity interlocking related 

parameters can be determined by using one triaxial test. The whole procedure was coded 

using MATLAB. 

To evaluate the feasibility of the straightforward method, one isotropic compression test 

and three drained triaxial tests on Toyoura sand were selected for parameters determination. 

The determined parameters were verified by simulating other three drained and six undrained 

triaxial tests on the same material. All comparisons between experimental results and 

numerical simulations demonstrate that the proposed procedure is capable of calibrating the 

model parameters. 

 Furthermore, the nonlinear CSL based model is implemented into a finite element code, 

and numerical modelling of a series of footing tests were performed using the above 

determined parameters. Overall, the proposed back calculation procedure is validated as an 

efficient and reliable bridge from critical state based constitutive modelling to finite element 

analysis.  
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 Finite element analysis of simple shear test 

3.1 Introduction 

 Simple shear tests have been widely used to assess the shearing strength of soil, as well 

as to simulate its response under field loading conditions (such as slope, pile driving, 

landslides and earthquakes). However, some features of these apparatuses remain unclear, 

which has limited related experimental investigations, as they cannot be directly measured. an 

assessment of the location of surface failure, the radial stress acting on the lateral boundary 

and the degree of principal stress/strain rotation are thus some issues related to the simple 

shear test (Vaid and Sivathayalan 1996; Wijewickreme et al. 2005; Dabeet 2014). Moreover, 

compared to the ideal simple shear condition, the absence of complementary shear stress on 

the lateral boundary leads to stress inhomogeneity for cylindrical specimens (Budhu 1984), 

which complicates laboratory investigations. Therefore, an efficient and effective method 

should be recommended for estimating the inhomogeneity of a specimen. 

 The finite element method (FEM) can be considered as an ideal analysis tool for 

investigating the distribution of stress and strain in soil specimens. Several two-dimensional 

(2D) simulations have been conducted to reproduce the stress inhomogeneity behaviour in 

simple shear tests (Budhu and Britto 1987; Dounias and Potts 1993; Wang et al. 2004; 

Grognet 2011). However, as a result of the 2D plane-strain assumption, which is only suitable 

for cubical specimens, only limited results and discussions regarding the boundary effects can 

be provided. Recently, a more advanced three-dimensional (3D) FE modelling was presented 

by Doherty and Fahey (2011), who used the Modified Cam-Clay model. Only the strength 

degradation, as caused by the stress inhomogeneity, was investigated using model parameters 

of Kaolin clay, without considering the anisotropic nature of soil.  

 In this chapter, a numerical approach for simulating the simple shear test is presented, 

based on FEM and advanced soil models. A critical-state-based sand model was first 

enhanced and implemented into the FE code, in which the effect of principal stress rotation 

during the simple shear process was considered. A series of GDS-type monotonic simple 

shear tests, on Fontainebleau sand cylindrical specimens, were carried out for the simulations. 

Then, a 3D FE analysis was conducted to accommodate the real size and boundaries of the 

GDS-type apparatus. Finally, complementary simple shear simulations were conducted to 

study the boundary effects on the inhomogeneity in the specimen, for different aspect ratios 

of a cylindrical specimen. 
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3.2 Enhanced constitutive model 

3.2.1 Basic framework of SIMSAND model 

The adopted SIMSAND model was developed based on the Mohr-Coulomb model by 

implementing the critical state concept with nonlinear elasticity, non-linear plastic hardening, 

and a simplified three-dimensional strength criterion (Yin et al. 2013; Jin et al. 2016a; Jin et 

al. 2016c; Wu et al. 2017). The basic constitutive equations are summarized in Table 3.1. The 

definitions of model parameters were also presented in Chapter 2.2. 

Table 3.1 Basic constitutive equations of SIMSAND 

Components Constitutive equations Parameters 

Elasticity 
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3.2.2 Consideration of soil anisotropy 

 Fabric anisotropy has been widely recognised as affecting the strength of granular 

material (Oda 1972; Miura et al. 1986; Oda and Nakayama 1989; Yao and Kong 2011; Gao 

and Zhao 2012, 2017). A simple methodology was adopted to enhance the model by 

incorporating a parameter of a cross-anisotropy joint invariant during the simple shear 

condition, to extend the original isotropic strength to an anisotropic strength in sand. In this 
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method, the fabric tensor Fij, as proposed by (Oda and Nakayama 1989), is used to describe 

the degree of cross anisotropy: 

0 0 1 0 0 1 0 0 2 0 0
1 1 2

0 0 0 1 0 0 1 0 0 1 0
3 3 9 3
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 (3-1) 

where  is a parameter to describe the fabric anisotropic distribution of granular material, 

with 0 <    being a typical range for sand. 

 The joint invariant A was adopted based on the theory of tensor (Wang 1970), which was 

formulated to relate the deviatoric part of the fabric tensor and deviatoric stress tensor: 

  ij ij

mn mn mn mn

s d
A

s s d d
=  (3-2) 

where sij (= ij-p’ij) is the deviatoric stress tensor, dij (= Fij-Fkkij/3) is the deviatoric part of 

the fabric tensor and ij is the Kronecker delta. 

 The incorporation of the anisotropic strength technique in this chapter is similar to that 

seen in (Li and Dafalias 2002; Gao and Zhao 2012), in which the effect of the anisotropy 

function was introduced into the strength criterion. The anisotropic interpolation function was 

formulated by the joint invariant A and cross anisotropy parameter . The original isotropic 

peak strength Mp and phase transformation strength Mpt were modified by the anisotropic 

correction function, as follows: 

  ( )exp ,p pM M g A =    , ( )exp ,pt ptM M g A =     (3-3) 

where g(A,) is an anisotropic interpolation function, which was employed in a similar form 

by Pietruszczak and Mroz (2000, 2001) as per Eq. (3-4): 

  ( ) ( ) ( )1 1, 1 1g A c A c A = −   + = −  +   (3-4) 

where c1 denotes a material parameter. For an isotropic sand sample,  = 0, g(A, )  0. For a 

cross-anisotropic sand sample with 0 <    g(A, ) varies with the change of A and . In 

most applications, the degree of fabric anisotropy  may not be conveniently measured. To 

address this difficulty, the combined term c1 was considered as a single material parameter 

as 1c  = c1, and thus only 1c  requires to be calibrated instead of determining the exact value 

of .  

 In addition, experimental comparisons between triaxial and simple shear tests by Vaid 

and Sivathayalan (1996) showed that the shear stiffness of simple shear tests is smaller than 
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that observed in triaxial tests. The main reason for this degradation of shear stiffness is the 

anisotropy of stress during the principal stress rotation process because of a simple shearing 

stage. This degradation was modelled by Yang and Yu (2006a, b; 2010) by introducing a 

non-coaxial plastic strain. In our critical-state-based model, the shear stiffness depended on 

the parameter kp controlling the slope of the hyperbolic curve 
p

dq p −  as seen in Table 3.1. 

Therefore, an anisotropic correction function was proposed to multiply parameter kp, (Eq. 

(3-5)), to deduce the shear stiffness with the development of principal stress rotation: 

  ( )2exp 1p pk k c A =   +     (3-5) 

where 2c  is a material parameter. 

 Then, Mp, Mpt and kp in the SIMSAND model were replaced by M’p, M’pt and k’p to 

reflect the effects of principal stress rotation on the mechanical behaviour of sand. 

3.2.3 Calibration of the model from triaxial tests on Fontainebleau sand 

 Because, in this study, NE34 Fontainebleau sand was used for simple shear tests, a series 

of conventional triaxial tests (Benahmed 2001; Andria-Ntoanina et al. 2010) and an isotropic 

compression test (Gaudin et al. 2005) were selected to assess the parameters determination, 

as shown in Figure 3.1. The determination is based on one isotropic compression test and five 

drained triaxial tests. 

 The parameters K0 and  were determined by fitting the isotropic compression test 

conducted by Gaudin et al. (2005) with K0 = 100 and  = 0.55, as shown in Figure 3.1(a). G0 

= 60 was calculated based on G0 = 3K0(1-2)/2(1+), taking a typical value of Poisson’s ratio: 

 = 0.5. 
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Figure 3.1 Parameters determination from isotropic compression and triaxial drained tests on 

Fontainebleau NE34 sand: (a) isotropic compression line, (b) deviatoric stress versus axial 

strain, and (c) void ratio versus mean effective stress 

 A series of drained triaxial tests, under low confining pressures up to 400 kPa (marked as 

TM1~TM11 in Table 3.2), were performed on NE34Fontainebleau sand; by (Andria-

Ntoanina et al. 2010) and are then selected. The friction angle  = 33.° was measured from 

the p′-q plot, according to the experimental results. The parameters eref,  and , controlling 

the position of CSL, and kp, Ad, np and nd, accounting for the shear sliding, can be determined 

by try-error or a more straightforward means (Wu et al. 2017). Note that the test data only 

extend to an axial strain of 10%; because the shear bands in the samples prevent to reach 

critical states. Thus, an optimisation-based inverse analysis was adopted in this case to 

identify all these model parameters by selecting five objective tests “TM1~TM5”. Details of 

the optimisation procedure can be found in Jin et al. (2016a, b, c), in which studies it was 

successfully applied to different soils using the same kind of tests as objectives.  

Table 3.2 Drained triaxial tests on Fontainebleau sand with different void ratios 

Tests TM1 TM2 TM3 TM4 TM5 TM6 TM7 TM8 TM9 TM10 TM11 

e0 0.718 0.712 0.702 0.637 0.573 0.637 0.638 0.636 0.584 0.573 0.571 

'c / kPa 50 100 200 50 50 100 200 400 100 200 400 

 

 The values of parameters were summarized in Table 3.3 for later simulations of simple 

shear tests. Other drained triaxial tests, shown in Table 3.2, and undrained triaxial tests as 

performed by Benahmed (2001), were simulated using the identified parameters. Figure 3.2 

shows the comparison between experimental and numerical results for drained triaxial tests 

on medium-density and high-density sand under confining stresses of 100kPa, 200kPa and 

400kPa. Figure 3.3 shows the comparison for the undrained triaxial tests, under confining 

stresses of 100kPa (TMFO1), 200kPa (TMFO2) and 400kPa (TMFO3), on very loose 

Fontainebleau sand samples (e0  0.89). All comparisons demonstrate a good performance of 
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the predictive ability of the model for sand with variable initial densities under different 

confining stresses. 

Table 3.3 Summary of model parameters for Fontainebleau sand 

Group Elastic CSL Shearing-sliding 

Parameters K0 /kPa   eref   c/ kp Ad np nd 

Values 100 0.25 0.51 0.811 0.055 0.46 33.2 0.0022 0.39 1.9 4 

 

 

 

Figure 3.2 Simulation results of triaxial drained tests on medium dense and very dense 

Fontainebleau sand: (a, c) deviatoric stress versus axial strain; (b, d) deviatoric stress versus 

void ratio 

 

Figure 3.3 Simulation results of triaxial undrained tests on very loose Fontainebleau sand: (a) 

deviatoric stress versus axial strain; (b) deviatoric stress versus mean effective stress for 

undrained tests; (c) pore pressure versus axial strain for undrained 
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3.2.4 Sensitivity of anisotropic parameters at simple shear condition 

 The parametric analysis was conducted based on the ideal simple shear condition, in the 

interests of studying the sensitivity of the incorporated parameters ( 1c  and 2c ), which can be 

identified based on experimental results of the simple shear tests. Figure 3.4 shows the 

simulated results, considering the parameters of Fontainebleau sand NE34 in Table 3.3, with 

different values of parameters 1c  and 2c . This shows that the parameter 1c  controls the 

degradation rate of shear strength, while 2c  controls the degradation rate of shear stiffness. 

Lower shear strength and dilatancy were obtained when increasing 1c , as shown in Figure 

3.4(a-c), while a lower shear stiffness and dilatancy were attained by increasing 2c , as shown 

in Figure 3.4(d-f). 

 

 

Figure 3.4 Model simulation for stress strain relation based on incorporation parameters, (a, b, 

c) constant a with different 1
c ; (d, e, f) constant 1

c  with different a 

3.3 Finite element analysis of simple shear tests 

3.3.1 Laboratory simple shear tests 

 To validate the FE approach with the enhanced model, some simple shear tests were 

conducted using a commercial GDS Instruments simple shear apparatus, the design of which 

is close to that of its NGI counterpart (Bjerrum and Landva 1966; Hooker 2002). The tested 

material was Fontainebleau sand NE34, a fine siliceous sand with sub-rounded grains (Figure 

3.5), which is a reference material in France for geotechnical applications, and the same as 

that used in triaxial tests by (Aghakouchak et al. 2015; Pra-ai and Boulon 2017). Its main 
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characteristics, summarized in Table 3.4, are a mean grain size of about 210 µm, a coefficient 

of uniformity of 1.53, minimum and maximum void ratios of 0.510 and 0.882, respectively, a 

specific weight of 26.00 kN/m3 (Andria-Ntoanina et al. 2010; Pra-Ai 2013). 

 

Figure 3.5 Particle shape of Fontainebleau sand 

Table 3.4 Physical properties of standard Fontainebleau sand 

Grain shape SiO2: % D50(mm) Cu(D60/D10) Gs emax emin 

Sphericity 99.70 0.21 1.53 2.65 0.882 0.510 

 The servo-controlled system is capable of conducting stress- or strain-controlled loading 

paths in both horizontal and vertical directions. The basic features of this apparatus are 

summarised in Figure3.6: (i) the cylindrical specimens were reconstituted with a size of D0 = 

70 mm in diameter and H0 = 25 mm in height (aspect ratio of H0/D0 = 0.36); (ii) the 

specimens were confined in a soft butyl membrane with a thickness of 0.2 mm, itself placed 

against stacks of rigid circular Teflon-coated thin rings (1 mm each) with 70 mm inner 

diameter, which maintained a constant cross-sectional area but allowed simple shear 

deformation; (iii) on both the top and bottom sides of the specimen, the sand was in contact 

with rough sintered stainless steel plates to prevent any sliding between the pedestals and the 

specimen. 

 A series of monotonic constant volume and constant normal stress simple shear tests 

were carried out, as shown in Table 3.5. The constant volume condition (“undrained 

condition”) was ensured by constraining the height of the specimen to a constant value after 

K0-consolidation. Note that all the tests were done in dry conditions. The constant normal 

stress condition (“drained condition”), meanwhile, was attained by constraining the normal 

stress on the top surface of the specimen following the K0-consolidation. All the experimental 

results were later used for FE analysis. 
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Figure 3.6 Details of cylindrical boundary for simple shear specimen 

Table 3.5 Summary of monotonic simple shear tests on Fontainebleau sand 

No. Loading type 
e0 

(initial) 
e 

(after K0) 

'n0 
(kPa) 

S-1 Constant normal stress 0.70 0.691 104 

S-2 Constant normal stress 0.70 0.688 208 

S-3 Constant normal stress 0.70 0.678 416 

S-4 Constant volume 0.68 0.666 208 

S-5 Constant volume 0.68 0.654 416 

3.3.2 Finite element modelling 

 The simple shear test was modelled in 3D, as shown in Figure 3.7. In other words, the 

model had the same size than the GDS simple shear apparatus presented in Figure 3.6. Owing 

to symmetry, only half of the cylinder specimen was modelled and a total of 11,000 elements 

were discretised for the cylinder specimen by the form of C3D8R elements in ABAQUS, as 

shown in Figure 3.7(c-d). The metal rings and top/bottom plates were considered as the 

boundaries of the column specimen and modelled as a rigid body. The metal rings had an 

inner diameter of 70 mm and a thickness of 1 mm, while the top and bottom plates were both 

70 mm in diameter and 2.5 mm in thickness. A total of 29 rigid rings were stacked and used 

to restrain the lateral displacement of the specimen, and two rigid (top and bottom) plates 

were used to restrain its vertical displacement. The frictionless contact was applied between 

the cylinder specimen and rigid boundaries (rings and frictional pedestals). The top and 

bottom surfaces of the specimen were coupled respectively to the top and bottom rigid plates 

to prevent any sliding between them and the specimen. 

inner diameter 70 mm
thickness 1mm 

rough sintered stainless plate

Specimen in the 
boundary of stack 

rings, h=25mm  
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Figure 3.7 Three-dimensional FEM model for simple shear tests: (a) initial state, (b) shearing 

state, (c) mesh in viewpoint of x-y space, (d) mesh in viewpoint of x-y space. 

 Two steps, the K0 consolidation and shearing processes respectively, were conducted to 

simulate the simple shear test. In the first step (K0 consolidation), forces equal to 0.2kN, 

0.4kN and 0.8kN were applied on the top plate respectively to generate the initial normal 

stress (n0) corresponding to 104kPa, 208kPa and 416kPa respectively. Then, for the 

shearing process, the simulation was conducted by moving the bottom plate at a rate of 0.05 

mm/s, while the top plate was fixed to zero velocity rate in x and y directions. A total time of 

100s was spent to produce a 20% shear strain. The boundary conditions of the simulation 

were considered similar to the physical laboratory-based GDS simple shear test. The constant 

normal stress simple shear tests were simulated by maintaining the constant normal force on 

the top plate; the constant volume simple shear tests were simulated by keeping the specimen 

at a constant height during the shearing process.  

 The measurement approach for the displacement and force was similar to that for the 

physical laboratory test. The effective normal stress n and shear stress  were obtained by 

calibrating the vertical and horizontal force respectively, which are measured on the bottom 

plate. The shear strain  was obtained as  = d/Hc (where Hc is the sample height at the start 

of the shearing and d is the horizontal displacement). The stress states, along with the x-axis 

(Path-1), y-axis (Path-2), and 25 mm radius circle (Path-3), were monitored respectively to 

assess the stress inhomogeneity during the shear process, as shown in Figures3.7(c-d). 

 The simple shear test, conducted with the constant normal stress condition with an initial 

state (n0 = 104 kPa, e0 = 0.7 as S-1), was simulated based on the FE model to calibrate the 

incorporated parameters ( 1c  and 2c ) for Fontainebleau sand. In addition, similar simulation 
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without such incorporation (as 1c  = 0 and 2c  = 0) was also conducted to highlight the model’s 

performance when incorporating parameters 1c  and 2c . The simulations and experiments are 

compared in Figure3.8, which shows that the simulated results with the incorporation of the 

parameters 1c = 0.18 and 2c  = 2.0 were generally in agreement with the experimental results. 

Thus, the values of the calibrated incorporation parameter ( 1c  = 0.18 and 2c  = 2.0) will be 

used for subsequent simulations of monotonic simple shear tests. 

 

Figure 3.8 Calibration of anisotropic parameters: (a) shear strain versus shear stress (b) shear 

strain versus void ratio  

3.3.3 Test validation  

 To validate the performance of the FE analysis with the enhanced model, four additional 

monotonic simple shear tests, presented in Table 3.5, were respectively simulated based on 

the 3D full simple shear model (Figure 3.7). Figure 3.9 presents the comparisons between 

simulations and experiments, including constant normal stress and constant volume 

conditions. The monotonic behaviour (contraction or dilation), for both constant normal 

stress and constant volume conditions, can generally be captured based on the 3D full size 

simple shear model. Therefore, the stress inhomogeneity for specimens can be analysed based 

on the FEM simulation results which are associated with difficulties to direct investigations 

in the laboratory (Budhu 1984). 

3.3.4 Distribution of normal stress 

 Figure 3.10 presents the evolution of the vertical stress distribution along three paths on 

the top surface of the specimen for the constant normal stress simple shear test (test S-3). 

These three paths were described previously in Figure3.7, which were used to assess the 

stress inhomogeneity along the x-axis (Path-1), the y-axis (Path-2) and the circle with 25 mm 

radius (Path-3). During the shearing process, the stress inhomogeneity increases with shear 

strain level, and the lowest and highest vertical stresses are located in the lateral (right and 

(a) (b)

1 0=c

Simple shear 

(constant normal stress)

2 =0c

S-1

1 18=0.c

2 =2.0c 1 0=c

2 =0c
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2 =2.0cSimulation

S-1
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left) boundaries. The results also indicate that the vertical stress can remain almost constant 

in the centre zone of the specimen.  

 

 

Figure 3.9 Simulation results by ideal and full three-dimensional simple shear tests (a) 

constant normal stress simple shear in - space; (b) constant normal simple shear in -

e space; (c) constant volume simple shear in - space; (d) constant volume simple shear in 

n- space. 

 

Figure 3.10 The distribution of vertical effective stress for constant normal stress test S-3 (a) 

along with path-1, (b) along with path-2 and (c) along with path-3 

 The distribution of vertical stress for constant volume tests (test: S-5) is also presented in 

Figure3.11. Unlike the constant normal stress condition, as a result of the boundary condition 

of constant volume, the vertical stress will first decrease at a relatively low shear strain level 

(contraction) and then increase (dilation). Compared to the constant normal stress test, similar 
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behaviour of vertical distribution can be found in that the lowest and highest value are also 

located in the lateral boundaries and fairly uniformly located in the centre zone. 

 

Figure 3.11 The distribution of vertical effective stress for constant volume test S-5 (a) along 

with path-1, (b) along with path-2 and (c) along with path-3 

 To study the stress inhomogeneity caused by the absence of complementary shear stress 

on the lateral boundary, a total of 11,000 Gauss points were summarised based on the total 

number of discretized elements of FEM modelling. Figure3.12 illustrates the normal 

distributions (see Eq.(3-6)) of vertical stress z based on all Gauss points in the FEM during 

the shearing process for both constant normal stress and constant volume simple shear tests:  
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  (3-6) 

where f(x) is the probability density function,  the mean of the distribution of sample x and 

 the standard deviation, in which the sample x corresponds to the vertical stress z, shear 

stress   deviatoric plastic strain 
p

d
   or the anisotropic variable A in probability analysis.  

 For the constant normal stress simple shear test, the mean value  corresponds to the 

mean vertical stress z, which remains stable and close to the initial normal stress (as n = 

416kPa). The deviation  corresponds to the degree of stress inhomogeneity, which gradually 

increases with the increase of shear strain, as shown in Figure3.12(a-d). In addition, a similar 

evolution of stress inhomogeneity (the standard deviation increases with the shear strain ) 

can also be found based on the constant volume simple shear test, as demonstrated in 

Figure3.12(e-h). 
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Figure 3.12 Normal distribution of vertical stress z with constant normal stress condition (a) 

=1%,(b) =5%,(c) =10% and (d) =20%; and with constant volume  condition (e) =1%,(f) 

=5%,(g) =10% and (h) =20%. 

3.3.5 Distribution of shear stress, deviatoric plastic strain and anisotropic variable 

 Based on the simulation results of the constant normal stress test (test: S-3), the 

evolutions of shear stress   (corresponding to xz in FE simulation), deviatoric plastic strain 

p

d
  and the anisotropic variable A are presented in Figure3.13. For the early shearing stage 

(stress strain  below or equal to 1%), the shear stress, deviatoric plastic strain and anisotropic 

variable A were fairly homogeneous into the specimen, especially in the central or middle 
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zones. For the shearing stage over 5% stress strain, the peak value of shear stress gradually 

spreads from the upper left and lower right corners to the central zone. A diagonal separation 

zone of deviatoric plastic strain 
p

d
  can be found in the specimen. In addition, because of the 

absence of friction between the lateral boundaries and specimen, shear stress  and deviatoric 

plastic strain 
p

d
  at lateral boundaries are almost zero during shearing process, which could 

be the reason behind stress/strain inhomogeneity, leading to progressive failure. These 

simulated tendencies of diagonal accumulated zones of shear stress  and deviatoric plastic 

strain 
p

d  are similar to those of the physical failure zone recorded by radiographs (Budhu 

1984, 1988). 

 

Figure 3.13 Profiles of successive simple shearing process for constant normal stress 

condition at n = 416kPa: (a) contours of shear stress ; (b) contours of deviatoric plastic 

strain 
p

d ; (c) contours of anisotropic variable A. 

 Figure 3.14 presents the profiles of shear stress , deviatoric plastic strain 
p

d
  and 

anisotropic variable A for the constant volume simple shear (test: S-5). Similarly to the 

profiles obtained by the constant normal stress tests (test: S-3), a diagonal zone of 

accumulated deviatoric plastic strain 
p

d
  is formed from the upper left to lower right corners. 

Because of the boundary condition of  constant height for the specimen, this accumulation of 

deviatoric plastic strain 
p

d
  in the diagonal zone was more obvious than in the constant 

normal stress condition. The anisotropic variable A was also accumulated along the diagonal 

zone in the specimen, as shown in Figures3.13(c) and 3.14(c). 
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Figure 3.14 Profiles of successive simple shearing process for constant volume condition at 

n = 416kPa: (a) contours of shear stress ; (b) contours of deviatoric plastic strain 
p

d ; (c) 

contours of anisotropic variable A. 

 Figure3.15 presents the probability analysis of inhomogeneity behaviour for three 

simulated state variables (, 
p

d
  and A), based on all Gauss points in FE modelling. It may be 

observed that the evolution of normal distribution was similar for both the shear stress  and 

deviatoric plastic strain p

d , in that the deviations enlarged with the strain level, which 

corresponds to the inhomogeneity of shear stress or plastic strain when greatly increased. 

Moreover, for the anisotropic variable A as seen in Figure3.15 (c, f), the deviation of the 

distribution was much changed at the low shear strain level as  = 0.5% (also seen in Figure 

3.4), meaning it would then not be sensitive to the increasing of shear strain (over 1%). 
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Figure 3.15 Probability distribution analysis with increasing of shear strain based on constant 

normal stress (a) shear stress, (b) plastic strain and (c) anisotropic variable, and constant 

volume (d) shear stress, (e) plastic strain and (f) anisotropic variable 

3.4 Evaluation of aspect ratio of sample 

3.4.1 Finite element modelling 

 The effect of the aspect ratio for a GDS-type cylindrical specimen was also investigated 

in this chapter. Three specimens of varying height (H0 = 15 mm, 25 mm and 35 mm) were 

modelled, as shown in Figure3.16. A total of 11,000, 11,000 and 13,750 elements were 

discretized respectively for the three aspect ratios (H0/D0 = 0.21, 0.36 and 0.5), in which same 

elements number 11000 for the cases of different heights H0 = 15 mm and 25 mm. The 

boundary condition of each aspect ratio is consistent with the GDS simple shear apparatus, 

which was introduced previously. Forces equal to 0.4kN and 0.8kN were applied on the top 

plate to generate initial normal stress (n0 = 208 and 416kPa, respectively). Then, to address 

the different aspect ratios, a 20% shear strain  was applied by moving the bottom plate at the 

rate of 0.03 mm/s, 0.05 mm/s and 0.07 mm/s respectively, in 100s, for cases of height H0 = 15 

mm, 25 mm and 35 mm, which corresponds to same shear strain rate for each test, as 0.2% 

strain per second. 

 

Figure 3.16 Finite element meshes for different aspect ratio of cylinder specimen: (a) H0 = 

15mm; (a) H0 = 25mm; (c) H0 = 35mm 
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3.4.2 Simulation results for different aspect ratios 

 Numerical models with three initial height-to-diameter ratios (H0/D0 = 0.21, 0.36 and 0.5) 

were conducted with both constant normal stress and constant volume conditions to 

investigate the effect of aspect ratios. The stress-strain relationships simulated by the three 

aspect ratios are compared in Figure3.17, which shows that the aspect ratio affects both the 

shear stiffness and shear strength. For the model with aspect ratio H0/D0 = 0.5, this 

corresponds to the smallest value of peak strength as well as strain dilatancy (or void ratio). 

Moreover, similar results regarding the peak shear stress and volumetric strain can be found 

between the aspect ratios H0/D0 = 0.36 and 0.21. The influence of aspect ratios on shear 

modulus or strength tends to stabilise for a certain value, as close to 0.36 as possible for the 

GDS-type simple shear tests, which presents a similar size effect feature as seen in 

experimental studies (Amer et al. 1984; Amer et al. 1986; Reyno et al. 2005).  

 

 

Figure 3.17 Comparison results between different aspect ratios of specimens: (a) constant 

normal stress simple shear in - space; (b) constant normal simple shear in -e space; (c) 

constant volume simple shear in - space; (d) constant volume simple shear in n- space. 

3.4.3 Inhomogeneity analysis  

 Figure3.18 presents the distribution of vertical stress and shear stress along Path-1 on the 

top surface of the specimen at shear strain  = 10% for three aspect ratios. The stress 

inhomogeneous behaviour can be found according to the stress distribution along the 
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horizontal direction on the top surface of the specimen. However, the inhomogeneous level 

among three aspect ratios cannot be easily demarcated, as a result of its similar distribution 

curve.  

 

 

Figure 3.18 Results for different aspect ratios of specimens about distribution of normal stress 

and shear stress on the Path-1: (a) constant normal stress condition (n0 = 208kPa); (b) 

constant normal stress condition (n0 = 416kPa); (c) constant volume condition (n0 = 

208kPa); (d) constant volume condition (n0 = 416kPa) 

 The contour of shear stress , deviatoric plastic strain 
p

d
  and anisotropic variable A are 

presented in Figures3.19–3.20 (cases of H0/D0 = 0.21, 0.36 and 0.5), to compare the 

inhomogeneous behaviour between different aspect ratios of the specimen. For the case of 

H0/D0 = 0.5, because of the higher-stacked rings (lateral boundary), the horizontal 

displacement of each ring could not follow a highly linear change from the bottom to top 

boundaries. A more non-uniform vertical boundary, along with the height of the specimen 

column, was formed, compared to the cases of H0/D0 = 0.21 and 0.36. In addition, for the 

higher aspect ratios of the specimen, the preferential dilation zone (as the dark colour in the 

contours of shear stress  and deviatoric plastic strain 
p

d
  in Figures3.19–3.20) could not 

easily diffuse from the upper left and lower right corners to the centre zone, and a larger 

magnitude of stress and strain accumulated in the centre zone of the specimen, as it was the 

case for H0/D0 = 0.5. Therefore, greater inhomogeneity will be developed for a higher aspect 

ratio specimen column, leading to a degradation of the strength and dilatancy behaviour of 

the specimen. 
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Figure 3.19 Comparisons of different aspect ratios of specimens for the constant normal 

stress condition (test S-2): (a) contour of shear stress at  = 10%, (b) contour of deviatoric 

plastic strain at  = 10%, (c) contour of Anisotropic variable A at  = 10% 

 

Figure 3.20 Comparisons of different aspect ratios of specimens for the constant volume 

condition (test S-4): (a) contour of shear stress at  = 10%, (b) contour of deviatoric plastic 

strain 
p

d  at  = 10%, (c) contour of Anisotropic variable A at  = 10% 

 Figure3.21 presents the histogram of the variables (z,  and 
p

d
 ) for the aspect ratio 

H0/D0 = 0.36, based on the constant normal stress and constant volume simple shear 

conditions. By fitting simulated variables of all the Gauss points in the FE model based on 

the probability function (Eq. (3-6)), three normal distributions, corresponding to different 

aspect ratios, were obtained to study the effect of the aspect ratio on the inhomogeneity of 

specimens. It may be observed that the highest aspect ratio, H0/D0 = 0.5, corresponds to the 

greatest value of deviations , meaning that a higher aspect ratio will generate greater 

inhomogeneity (see Figure3.21) as well as a lower stress level (see Figure3.17). 
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Figure 3.21 Probability distribution analysis with different aspect ratios at 10% shear strain: 

(a-b) for vertical stress z, (c-d) for shear stress  and (e-f) for deviatoric plastic strain
p

d  

3.5 Conclusion 

 A numerical approach to model simple shear tests, under the influence of sample size, 

was developed. The approach was based on a FE analysis, with implementation of the 

critical-state-based model. The adopted model was extended from the original isotropic 

strength to an anisotropic strength by incorporating a parameter of a cross-anisotropy joint 

invariant. The inherent anisotropy behaviour during the simple shear condition was thereby 

captured. 
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 Then, a series of cylindrical specimen GDS-type monotonic simple shear tests on 

Fontainebleau sand were conducted under both constant normal stress and constant volume 

loading conditions. 3D FE simulations with the same size and boundaries of laboratory GDS-

type apparatus were carried out to validate the performance of FE analysis with the enhanced 

model. Moreover, the inhomogeneity features for the physical specimen were also illustrated 

based on the FE simulation, which cannot be assessed using ideal single element simple shear 

condition. 

 Finally, some complementary simulations to study the sample size effect were conducted 

for different aspect ratios of the cylindrical specimen. Comparisons show that a higher aspect 

ratio specimen results in greater stress inhomogeneity in the specimen in terms of stress and 

strain distributions. This study can improve our understanding of the simple shear test 

condition and provide a computational tool for analysis of specimens’ inhomogeneity 

behaviour. 
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 Normal effective stress degradation in sand under undrained 

simple shear condition 

4.1 Introduction 

Pile foundations are generally subjected to lateral and axial, monotonic and cyclic loads, 

as for example it is the case for wind turbines. Because the severity of the loads can induce a 

degradation of the shaft capacity (Jardine et al. 2005; Andersen 2009; Gavin et al. 2011; 

Bekki et al. 2016), in particular due to the axial cyclic components, it needs to be more 

deeply investigated. Indeed, the initial horizontal effective stress at the interface between the 

soil and the pile, governing the level of the local shear resistance and thus the global shaft 

capacity, could be gradually reduced due to the volumetric behaviour of the soil or the 

generation of excess pore pressure during cyclic loading. Therefore, it is highly valuable to 

develop analytical methods which address the changes of the soil properties so that the 

evolution of the shaft capacity of piles under cyclic loading can be more easily interpreted.  

In order to investigate the soil response under cyclic loading, various cyclic tests such as 

triaxial tests, simple or direct shear tests, torsional shear tests (Hyodo et al. 1991; Yoshimine 

et al. 1998; Yoshimine et al. 1999; Vaid et al. 2001; Dupla and Canou 2003; Andersen 2009; 

Aghakouchak et al. 2015), have been conducted, usually by assuming uniform load-

controlled cycles on the specimen in undrained conditions. Based on these soil element tests, 

various empirical equations have been proposed for predicting the soil response concerning 

the generation of pore pressure or the degradation of the effective normal stress.  

Based on cyclic triaxial tests, (Seed and Idriss 1971b) have defined a uniformed ‘S’ 

shape for the generation of excess pore pressure which can be formulated by an arcsine 

function depending on a normalized number of cycles to liquefaction (Mitchell and Dubin 

1986; Polito et al. 2008; Chang et al. 2014; Mohtar et al. 2014; Porcino et al. 2015). Ishibashi 

et al. (1977) have developed a model of incremental pore pressure depending on the shear 

stress amplitude and the number of cycles (Sherif et al. 1978; Ishibashi et al. 1982; 

Krishnaswamy and Thomas Isaac 1995; Georgiannou and Tsomokos 2008; Konstadinou and 

Georgiannou 2014). Nemat-Nasser and Shokooh (1979) have introduced an ‘energy-based’ 

method in which the generation of excess pore pressure is related to the amount of dissipated 

energy (shear work) during cyclic loading (Towhata and Ishihara 1985; Law et al. 1990; 

Green et al. 2000; Dief and Figueroa 2007).  

Note that the influence of the initial average shear stress, which is however known as a 

key factor in the cyclic resistance of sand (Vaid and Chern 1983; Vaid et al. 2001; Yang and 
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Sze 2011; Yang and Pan 2017), has not been considered in these predictive models. Hence, a 

more efficient approach for describing more precisely the degradation of the effective normal 

stresses acting on a pile shaft must include the investigation of the influence of the initial 

average shear stress.  

Until now, only laboratory experiments have been considered to quantify the degradation 

of the effective normal stress due to shearing. Most experimental studies have limited this 

scope on results from triaxial tests. In spite of their shortcomings (Andersen 2009), simple 

shear tests have been preferred to triaxial tests since the interface shearing is much better 

reproduced through this type of testing, even if direct shear testing could also be considered 

(Pra-ai 2013; Pra-ai and Boulon 2017). Similarly, even if it is now currently accepted that the 

shearing of a soil–pile interface occurs at a relatively constant normal stiffness (Fakharian 

and Evgin 1997), a conservative approach would be to perform constant volume simple shear 

tests, which maximize the degradation of the effective normal stress, as previously done in 

(Lambe and Whitman 1969; Dyvik et al. 1987; Andersen 2009) for instance. The stress state 

of a soil element around the pile foundation is shown in Figure 4.1. The soil element is 

subjected to cyclic loading with symmetrical loading (ave = 0) or non-symmetrical loading 

(ave  0).  

 

Figure 4.1 Analysis of soil element adjacent to pile based on simple shear apparatus 

From the above literature review, the following points could be noted. Firstly, in the 

laboratory, soil element tests would greatly simplify the testing operation and reduce 

significantly the financial cost compared to full size or even model pile tests for studying the 

soil response during cyclic loading. Secondly, the effect of the initial average shear stress is 

rarely investigated. Thirdly, compared to triaxial tests, simple shear tests are acknowledged to 

provide more representative loading conditions for interface shearing.  

This study, therefore, aims to provide a contribution to characterize the degradation of 

the effective normal stress based on undrained monotonic and cyclic simple shear tests on 
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Fontainebleau sand and to develop a procedure for calibrating this degradation. Following 

these objectives, the first task was to determine through undrained monotonic simple shear 

tests, the phase transformation line (PTL), since the position of the PTL governs the 

volumetric behavior and, therefore, the pore pressure evolution. Then, the number of cycles 

to the instability (liquefaction for tests with null average shear stress and cyclic mobility for 

tests with average shear stress) was investigated based on the results of cyclic simple shear 

tests under different loading conditions. Furthermore, an empirical formulation expressing the 

degradation of the effective normal stress during cyclic loading was developed. Then, 

experimental data on Fraser River sand and a carbonate sand from Quiou (France) obtained 

through simple shear tests on the one hand, and on Karlsruhe sand subjected to triaxial 

loading on the other hand, were selected from the literature review to verify the proposed 

calibration procedure. Finally, a series of additional tests were performed on Fontainebleau 

sand in order to verify the accuracy of the proposed empirical equation. 

4.2 Material and testing program 

The tested material is the Fontainebleau sand NE34. As a reference material in France for 

geotechnical applications, this sand has been used in many experimental studies. Its cyclic 

behavior has been relatively well documented at the scale of the representative elementary 

volume in laboratory tests as well as at the scale of soil–structure interactions (Dupla and 

Canou 1994; Gaudin et al. 2005; Andria-Ntoanina et al. 2010; Yang et al. 2010; Pra-Ai 2013; 

Sim et al. 2013c; Aghakouchak et al. 2015; Pra-ai and Boulon 2017), resulting in the 

establishment of Poulos’ cyclic stability diagram (Poulos 1988).  

 The constant volume condition is ensured by constraining the height of the sample to a 

constant value after the K0-consolidation. Compared to a truly undrained test where the 

evolution of excess pore pressure can be directly measured, the normal effective stress 'n on 

the horizontal plane continuously varies to fulfill the constant volume condition during 

simple shear testing. The assumption that the change in the applied normal effective stress is 

equal to the excess pore which would have developed in a truly undrained test has been 

validated by Dyvik et al. (1987), and has been applied in extensive laboratory testing during 

the last two decades. 

The experimental campaign consisting of monotonic and cyclic simple shear tests is 

presented in Table 4.1. For the cyclic tests, sine cycles with a frequency of 0.05 Hz were 

applied. The dry specimens, prepared by air pluviation, were first consolidated under K0-

condition up to a given initial effective normal stress 'n0. Three series of constant volume 

simple shear tests were carried out: 

1) The first series consisted of monotonic simple shear tests, which were performed at 

different initial effective normal stresses (104  'n0  416 kPa) and different void ratios 

after consolidation (0.59  e0  0.74). The objective of this part was to determine the 
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shear stress at phase transformation state pt, for different void ratios after consolidation 

e0 and different initial effective normal stresses 'n0. 

2) The second series consisted of symmetrical cyclic simple shear tests (the average shear 

stress ave was null). Several tests with different cyclic shear stress amplitudes (5.2  cyc 

 62.4 kPa) and initial normal stresses (104  'n0  416 kPa) on medium dense 

specimens were performed. The objective of this part was to study the influence of the 

cyclic shear stress cyc on the number of cycles to liquefaction NL. 

3) The third series consisted of non-symmetrical cyclic simple shear tests (ave  0), with 

different cyclic shear stress amplitudes (10.4  cyc  41.6 kPa) and different average 

shear stresses (5.2  ave  41.6 kPa) on medium dense specimens under an effective 

normal stress 'n0 = 416 kPa. Two sets of loading conditions, namely shear stress-

reversal (cyc > ave) and no shear stress-reversal (cyc  ave), were applied. The 

objective in this part was to study the influence of the average shear stress ave on the 

number of cycles to liquefaction NL. 
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Table 4.1 Summary of experiments on tested Fontainebleau sand 

Test 

No. 
Loading type e0 

Dr0 

% 

'n0 

(kPa) 

pt 

(kPa) 

ave 

(kPa) 

cyc 

(kPa) 
ave/'n0 CSR NL 

m1 Monotonic 0.744 37.1  104 6.6 - - - - - 

m2 Monotonic 0.688 52.2  104 12.8 - - - - - 

m3 Monotonic 0.631 67.5  104 16.1 - - - - - 

m4 Monotonic 0.586 79.6  104 25 - - - - - 

m5 Monotonic 0.644 64.0  208 28.1 - - - - - 

m6 Monotonic 0.733 40.1  312 26 - - - - - 

m7 Monotonic 0.730 40.9  312 25.5 - - - - - 

m8 Monotonic 0.679 54.6  312 34 - - - - - 

m9 Monotonic 0.627 68.5  312 44 - - - - - 

m10 Monotonic 0.617 71.2  312 59 - - - - - 

m11 Monotonic 0.615 71.8  312 60 - - - - - 

m12 Monotonic 0.651 62.1  416 69 - - - - - 

c13 Symmetrical loading  0.658 60.2  104 14 0 5.2 0 0.05 18 

c14 Symmetrical loading  0.664 58.6  208 27 0 5.2 0 0.025 88 

c15 Symmetrical loading  0.670 57.0  208 26 0 10.4 0 0.05 14 

c16 Symmetrical loading  0.660 59.7  208 28 0 20.8 0 0.1 2 

c17 Symmetrical loading  0.663 58.9  312 42 0 15.6 0 0.05 33 

c18 Symmetrical loading  0.662 59.1  416 57 0 10.4 0 0.025 366 

c19 Symmetrical loading  0.660 59.7  416 57 0 10.4 0 0.025 300 

c20 Symmetrical loading  0.638 65.6  416 67 0 20.8 0 0.05 81 

c21 Symmetrical loading  0.663 58.9  416 57 0 20.8 0 0.05 62 

c22 Symmetrical loading  0.656 60.8  416 60 0 20.8 0 0.05 62 

c23 Symmetrical loading  0.655 61.0  416 60 0 31.2 0 0.075 10 

c24 Symmetrical loading  0.644 64.0  416 65 0 41.6 0 0.1 3 

c25 Symmetrical loading  0.648 62.9  416 65 0 62.4 0 0.167 1 

c26 Non-symm Stress reversal 0.629 68.0 416 71 5.2 10.4 0.0125 0.025 600 

c27 Non-symm Stress reversal 0.654 61.3 416 60 5.2 20.8 0.0125 0.05 57 

c28 Non-symm Non-stress reversal 0.669 57.3 416 53 10.4 10.4 0.025 0.025 368 

c29 Non-symm Stress reversal 0.663 58.9 416 56 10.4 20.8 0.025 0.05 19 

c30 Non-symm Stress reversal 0.654 61.3 416 60 10.4 20.8 0.025 0.05 39 

c31 Non-symm Stress reversal 0.641 64.8 416 66 10.4 20.8 0.025 0.05 56 

c32 Non-symm Non-stress reversal 0.653 61.6 416 61 20.8 10.4 0.05 0.025 240 

c33 Non-symm Non-stress reversal 0.641 64.8 416 57 20.8 10.4 0.05 0.025 310 

c34 Non-symm Non-stress reversal 0.635 66.4 416 71 20.8 20.8 0.05 0.05 100 

c35 Non-symm Non-stress reversal 0.666 58.1 416 55 20.8 20.8 0.05 0.05 45 

c36 Non-symm Stress reversal 0.640 65.1 416 66 20.8 41.6 0.05 0.1 7 

c37 Non-symm Non-stress reversal 0.654 61.3 416 60 41.6 10.4 0.1 0.025 330 

c38 Non-symm Non-stress reversal 0.664 58.6 416 56 41.6 20.8 0.1 0.05 19 

* Initial void ratio e0 and relative densities Dr0 were measured at the corresponding initial effective normal stress 

'n0; for monotonic loading, the shear stress at phase transformation state pt was measured based on the 

experimental results, and for cyclic loading pt was calculated based on the empirical equation Eq. (4-1); cyclic 

shear stress ratio CSR could be expressed by the cyclic shear stress cyc over the initial effective normal stress 

'n0; NL is the number of cycles to liquefaction. 
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4.3 Test results and interpretation 

4.3.1 Monotonic stress-strain behavior  

Figure 4.2 shows the stress-strain response of Fontainebleau sand samples during 

monotonic simple shear testing. The shear strain  is defined as  = d/Hc (where Hc is the 

sample height at the start of the shearing, and d is the horizontal displacement). Under 

constant volume condition, the shearing induced, at first, a decrease of the effective normal 

stress before the phase transformation state was reached. The extreme points in the shear 

stress – effective normal stress diagram mark the change from contractancy to dilatancy and 

therefore the position of the phase transformation state. Beyond that state, the effective 

normal stress increased towards the failure line.  

Figure 4.2(a, b) presents the influence of the void ratio after consolidation e0 for a given 

effective normal stress of 312 kPa. The loosest specimen after consolidation exhibits the 

largest decrease of the effective normal stress. Figure 4.2(c, d) presents the influence of the 

initial effective normal stress level, from 104 kPa to 416 kPa, for a range of relative densities 

corresponding to a medium density. The friction angle at failure f is equal to 30°. The phase 

transformation states are located on a unique straight line passing through the origin, whose 

slope corresponds to a friction angle of 24°. The phase transformation line (PTL) delineates 

two distinct volumetric behaviors (contractancy below PTL, dilatancy between PTL and 

failure line), which will subsequently govern the evolution of the samples during cyclic 

shearing.  

In Figure 4.2(e,f), the effective normal stress (n) and the shear stress ( ) are normalized 

by the corresponding initial effective normal stress (n0) and the shear stress at phase 

transformation state (pt), respectively. For the same initial effective normal stress, a smaller 

void ratio e0 corresponds to a larger normalized effective normal stress (n-pt/ n0) at the 

phase transformation state. For the same void ratio, the magnitude of the normalized stress at 

the phase transformation state (n-pt/ n0, /pt) is slightly affected by the value of the initial 

effective normal stress. 

The values of the shear stress at phase transformation pt are plotted in Figure 4.3a 

against the relative density after consolidation Dr0, defined in Eq. (4-1). It can be seen that the 

shear stress pt depends on the void ratio e0 and on the initial normal effective stress 'n0. In 

Figure 4.3b, the shear stress pt is normalized by the initial effective normal stress 'n0 and 

plotted as a function of Dr0. A non-linear relationship between the void ratio e0 and the 

normalized shear stress pt/'n0 is obtained and an empirical function can be deduced, which 

allows us to estimate the shear stress pt, depending on the given parameters 'n0 and e0, 

Eq.(4-1). The parameters M and M were calibrated by fitting the experimental data for 

Fontainebleau sand: M= 0.68 and M = 1.76.  
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Figure 4.2 Undrained monotonic test results on Fontainebleau sand: (a-b) comparison results 

with different initial void ratios; (c-d) comparison results with different initial effective 

normal stresses; (e-f) normalized monotonic behaviour with different initial void ratios and 

effective normal stresses 
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Figure 4.3 Shear stress at phase transformation as a function of experimental variables initial 

effective normal stress and relative density: (a) shear stress at phase transformation versus 

initial relative density; (b) normalized shear stress at phase transformation versus initial 

relative density 

4.3.2 Symmetrical cyclic loading 

13 constant volume symmetrical cyclic simple shear tests were performed on medium 

dense Fontainebleau sand specimens under various initial effective normal stresses ('n0 = 

104, 208, 312, 416 kPa). A typical test result (Test c21: ave = 0 kPa, cyc = 20.8 kPa, 'n0 = 

416 kPa) is presented in Figure 4.4. Upon reaching the phase transformation line, the 

effective stress path started to follow a butterfly-shaped loop due to the continuous transition 

from contractany to dilatancy. It also quickly approached the failure line, which resulted in a 

rapid generation of large shear strains (Figure 4.4a, b and c). The effective normal stress 'n 

decreased with the number of cycles, until reaching a minimum value ('n  0 kPa) when 

liquefaction occured (Figure 4.4d). Under this condition, the specimen could no longer 

sustain any loading (loss of controllability of the test). In this example, the required number 

of cycles to trigger liquefaction NL was equal to 62 (NL = 62).  

The degradation of the effective normal stress for all the symmetrical cyclic tests has 

been compiled in Figure 4.5, as a function of the initial normal effective stress n0 and for 

different cyclic shear stresses cyc. As expected, for a given effective initial normal stress, the 

number of cycles to liquefaction increased as the cyclic shear stress decreased. Likewise, a 

higher initial effective normal stress delayed the occurrence of liquefaction (greater NL) since 

the distance between the initial stress state and the corresponding phase transformation state 

in the (n0 -  ) stress plane was larger.  
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Figure 4.4 Symmetrical cyclic response of Fontainebleau sand: (a) shear stress versus 

effective normal stress; (b) shear stress versus shear strain, (c) shear strain versus number of 

cycles; (d) effective normal stress versus number of cycles 

 

 
Figure 4.5 Degradation of effective normal stress under different initial effective normal 

stresses (a) 104 kPa, (b) 208 kPa, (c) 314 kPa and (d) 416 kPa  
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In order to establish a correlation between the cyclic shear stress and the number of 

cycles to liquefaction, the cyclic shear stress amplitude was normalized by the phase 

transformation shear stress pt obtained through monotonic simple shear tests and calculated 

by Eq.(4-1). The results (points in Figure 4.6) are plotted versus the number of cycles to 

liquefaction NL. The experimental data are then fitted assuming a power function between NL 

and the normalized cyclic shear stress ratio cyc/pt, as indicated in Eq. (4-2). In the case of 

Fontainebleau sand, the power    was found equal to 0.27. 

  
L

1cyc

pt N 




=  (4-2) 

 

Figure 4.6 Normalized cyclic shear stress versus number of cycles to liquefaction 

4.3.3 Non-symmetrical cyclic loading 

14 constant volume non-symmetrical cyclic simple shear tests were performed on 

medium dense Fontainebleau sand samples with a given initial normal effective stress ('n0 = 

416 kPa). Two loading conditions were imposed: stress reversal (cyc > ave) and no-stress 

reversal (cyc < ave) cyclic loading.  

Figure 4.7 shows a typical test result (Test c30) for stress reversal cyclic loading (cyc = 

20.8 kPa, ave = 10.4 kPa, 'n0 = 416 kPa). The initial average shear stress was firstly reached 

in the undrained condition. The cyclic response was very similar to the one observed in the 

symmetrical case, except for a small evolution of the average shear strain. The comparison of 

Figures 4.4 and 4.7, for which the unique difference is the value of the average shear stress (0 

kPa for Test c21 in Figure 4.4, 10.4 kPa for Test c30 in Figure 4.7), demonstrates that an 

increase of the average shear stress favours the degradation of the effective normal stress, 

since the number of cycles to liquefaction was reduced by a factor of about 1/3 (62 to 39 

cycles).  
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Figure 4.7 Non-symmetrical cyclic response of Fontainebleau sand with stress reversal 

loading: (a) shear stress versus effective normal stress; (b) shear stress versus shear strain, (c) 

shear strain versus number of cycles; (d) effective normal stress versus number of cycles  

Similarly, a typical result of no-stress reversal cyclic loading (Test c38: cyc = 20.8 

kPa, ave = 41.6 kPa, 'n0 = 416 kPa) is reported in Figure 4.8. All the test loading conditions 

except the value of the average shear stress were the same, as in Tests c21 and c30 previously 

discussed. The instability, corresponding to a cyclic mobility mechanism, occurred at a 

smaller number of cycles (between 15 and 20 cycles), due to the proximity of the stress path 

to both the PT and failure lines. The effective normal stress reached a residual value (100 kPa 

in the case of Test c38). For this type of stress controlled simple shear test, the instability was 

determined by the condition of the effective normal stress reaching a residual value ('n-residual 

= 98 kPa). 

 

0 100 200 300 400
-80

-40

0

40

80

 / kPa

 
 /

 k
P

a

-10 -5 0 5 10
-80

-40

0

40

80

 / %

 
 /

 k
P

a

0 10 20 30 40 50
-10

-5

0

5

10

 
/ 

%

 N

0 10 20 30 40 50
0

100

200

300

400


n
 /

 k
P

a

 N

NL NL


/ 

k
P

a


/ 

k
P

a

'n / kPa  / %


/ 

%


' n

/ 
k
P

a

cyc  / %cyc

Liquefaction at 39 cycles

PT point
PT point

Fontainebleau sand (c30)

(a) (b)

(c) (d)



76 

 

 

Figure 4.8 Non-symmetrical cyclic response of Fontainebleau sand with no-stress reversal 

loading: (a) shear stress versus effective normal stress; (b) shear stress versus shear strain, (c) 

shear strain versus number of cycles; (d) effective normal stress versus number of cycles 

Figure 4.9 summarizes all the results relative to non-symmetrical cyclic tests under the 

same initial effective normal stress of 416 kPa with different average shear stresses. The 

results corresponding to the stress reversal condition for which the effective normal stresses 

decreased to zero, i.e. the liquefied state, were plotted in red. For the no-stress reversal 

condition, the effective normal stress decreased to a residual stress. For a better comparison 

of the results obtained under these two conditions, the number of cycles to instability 

(liquefaction or cyclic mobility) was defined by the effective normal stress reaching the 

limited final value. The degradation of the effective normal stress for all the non-symmetrical 

cyclic tests was plotted as a function of the cyclic shear stress cyc and the average shear stress 

ave in Figure 4.9. As expected, for a given average shear stress, the number of cycles to 

liquefaction increased with the decrease of the cyclic shear stress. 
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Figure 4.9 Degradation of effective normal stress under different average shear stresses: (a) 

5.2 kPa; (b) 10.4 kPa; (c)20.8 kPa; (d) 41.6 kPa 

 Figure 4.10(a) presents the hysteresis loops of non-stress reversal cyclic loading 

corresponding to the cyclic mobility final state which were used to calibrate the value of the 

residual effective normal stress ('n-residual). The values of 'n-residual corresponding to the 

maximum shear stress max which is equal to the average shear stress ave plus the cyclic shear 

stress cyc, are shown in Figure 4.10(b) for nine no-stress reversal cyclic tests. An empirical 

expression could be suggested to evaluate the residual effective normal stress, which is 

related to the Mohr-Coulomb failure line:  
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where  is a parameter obtained by fitting the data of non-stress reversal cyclic tests ( = 0.77 

for Fontainebleau sand); max is the maximum shear stress equal to ave+cyc; f is the friction 

angle at failure. A good agreement could be obtained between calculated results (dash blue 

line) and measurements (red symbols). 
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Figure 4.10 Evaluation of effective residual normal stress in no-stress reversal cyclic loading 

4.4 Evaluation of the degradation of the effective normal stress  

4.4.1 Number of cycles to liquefaction 

The experimental data were mapped on a 3D plot, where two axes represent the stress 

ratios cyc/pt and ave/pt, and the third one, the number of cycles to instability (liquefaction or 

cyclic mobility) (Figure 4.11). This plot can be used to describe the cyclic resistance of 

Fontainebleau sand. For a constant level of normalized average shear stress (ave/pt), the 

number of cycles to instability decreases with the increase of the normalized cyclic shear 

stress (cyc/pt). Inversely, for a constant level of normalized cyclic shear stress (cyc/pt), the 

number of cycles to instability decreases with the increase of the normalized average shear 

stress (ave/pt). 

 

Figure 4.11 Cyclic resistance surface for cyclic simple shear tests on Fontainebleau sand 

In order to formulate an expression for the number of cycles to instability, all the couples 

of normalized stresses (ave/pt, cyc/pt) were reported in a diagram of stability shown in 

Figure 4.12(a). The space is then delimited by the diagonal corresponding to a failure at the 
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first cycle. Instabilities reached at a higher number of cycles NL fell on straight lines whose 

slope k decreased with NL, as shown in Figure 4.12 (a). The slope k can be approximated by:  

  
1

cyc pt cyc

ave pt pt ave

k
  

   
= =

− −
  (4-4) 

Figure 4.12 (b) correlates the calculated values of k and the corresponding values of NL 

which can be expressed by:  
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  (4-5) 

where  and  are parameters obtained by fitting the experimental results ( = 1.396,  = 

3.505 for Fontainebleau sand). 

The diagram in Figure 4.12(a) can be used to predict the number of cycles to instability 

(Jardine et al. 2005; Tsuha et al. 2012b). The influence of the average shear stress and of the 

cyclic shear stress has been taken into account in Eq. (4-4), whereas the link between cyclic 

and monotonic responses of sand is obtained by the variable pt calibrated by Eq. (4-1), the 

function of the void ratio e and of the initial effective normal stress'n0.  

 

Figure 4.12 Cyclic resistance diagram for cyclic simple shear tests on Fontainebleau sand: (a) 

relationship between normalized cyclic shear stress and normalized average shear stress; (b) 

empirical curves for number of cyclic to liquefaction 

4.4.2 Degradation of effective normal stress  

During stress-controlled constant volume cyclic simple shear testing, the effective 

normal stress 'n decreases from its initial value either to zero or to a residual value. In 

agreement with the empirical expression of the pore pressure evolution suggested by Seed 

and Booker (Seed and Idriss 1971a), the degradation of the effective normal stress can be 

expressed by the following relation: 
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where N is the current number of cycles and   is a material parameter. 

To identify the material parameter   the effective normal stress 'n normalized by its 

initial value 'n0 was represented as a function of the normalized number of cycles to 

instability (N/NL), as shown in Figure 4.13. 6 experimental results (Tests c19, c20, c23, c26, 

c28 and c32) with different initial effective normal stresses, different cyclic shear stresses and 

different average shear stresses were selected to verify the empirical equation. The fitting of 

Eq. (4-6) with experimental data led to a value  =3.4 for Fontainebleau sand. By combining 

Eqs (4-5) and (4-6), the following relationship can be proposed:  
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where 'n-residual = 0 kPa in the condition of cyclic stress reversal (cyc > ave) and 'n-residual 

being calculated by using Eq. (4-3) in the condition of no-stress reversal (cyc  ave). 

 

Figure 4.13 Normalized effective normal stress against normalized number of cycles to 

liquefaction 

4.4.3 Calibration procedure  

The calibration procedure for estimating the degradation of the normal effective stress is 

presented in Figure 4.14. Three successive steps are indicated in the calibration chart: (1) an 

expression of the shear stress at the phase transformation state needs be obtained according to 

the results of monotonic testing as Eq.(4-1); (2) a cyclic resistance diagram (ave/pt, cyc/pt, 

NL) for predicting the number of cycles to liquefaction is plotted based on the cyclic test 

results (with different cyclic shear stresses and average shear stresses) in order to calibrate the 
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parameters in Eq. (4-5); (3) the effective normal stress degradation is then calculated in order 

to calibrate Eqs. (4-6) and (4-7).  

This analytical formulation can be easily used in practice to analyze the degradation of 

the shaft capacity for pile design. From this calibration procedure, a minimum of eight tests 

have to be considered for determining the material parameters, including at least 3 monotonic 

tests with different void ratios to determine the phase transformation state, 3 symmetrical 

cyclic loading tests with different cyclic stress amplitudes cyc and 2 non-symmetrical cyclic 

loading tests with different average shear stresses ave to study the degradation of the effective 

normal stress with the number of cycles. 

 

Figure 4.14 Calibration procedure for the degradation of the effective normal stress 

In order to validate the whole procedure, simple shear tests on Fraser River sand 

(Sivathayalan 1994), Quiou carbonate sand (Porcino et al. 2008), and triaxial tests on 

Karlsruhe sand (Wichtmann and Triantafyllidis 2016a, 2016b) were selected. The physical 

properties of these three sands are presented in Table 4.2. 

Table 4.2 Physical properties of three studied sands 

Material D50 (mm) Cu Gs emax emin 

Fraser River sand 0.30 1.6 2.72 1.000 0.680 

Quiou sand 0.65 2.8 2.70 1.169 0.763 

Karlsruhe sand 0.14 1.5 2.70 1.054 0.677 

The normalized shear stresses at PTL (pt/'n0 for simple shear tests and qpt/2p'0 for 

triaxial tests) were plotted against the corresponding relative densities in Figure 4.15. The 

curves calculated from Eq.(4-1) as solid lines were fitted from the experimental data and the 

deduced parameters are given in Table 4.2. The cyclic stability diagram for calibrating the 

number of cycles to instability is shown in Figure 4.16. The parameters  and  could be 

obtained by fitting the experimental results as shown in Table 4.3. Therefore, the behavior of 

Monotonic loading Cyclic loading 
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different sands (quartz sand and carbonate sand) for different loading conditions (simple 

shear and triaxial loading) can be well expressed by Eq.s (4-1) and (4-5).  

Table 4.3 Parameters of empirical model for number of cyclic to liquefaction  

Material M M pt ()   

Fontainebleau sand 0.68 1.76 24 1.396 3.505 

Fraser River sand 1.233 1.478 30 3.183 2.787 

Quiou sand 0.767 0.318 27 1.004 4.353 

Karlsruhe sand 0.738 0.746 29.6 1.498 4.764 

 

Figure 4.15 Calibration results of normalized shear stress at phase transformation state: (a) 

Fraser River sand; (2) Quiou sand; (3) Karlsruhe sand 

 

Figure 4.16 Calibration results of numbers of cycles to instability: (a) Fraser River sand; (2) 

Quiou sand; (3) Karlsruhe sand 

4.4.4 Validation of the suggested relationship 

The calibration procedure has provided the following parameters for Fontainebleau sand: 

M = 0.68, M = 1.76, 1 = 1.396, 2 = 3.505, c =3.4. The tests presented in Table 4.1 can be 

considered as the training tests aimed to determine these parameters. 6 complementary tests 

with different loading conditions were selected and simulated to validate the performance of 
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Eq. (4-7). As shown in Figure 4.17(a), the results can be well predicted for different loading 

conditions including symmetrical cyclic loadings with different cyc (Tests c19, c20 and c23) 

and non-symmetrical cyclic loadings with different ave (Tests c26, c28 and c32).  

To confirm the pertinence of this equation, a series of additional tests on Fontainebleau 

sand was performed at a consolidation stress level 'n0 = 500 kPa with different loading paths 

including cyclic shear stresses from 12.5 kPa to 50 kPa and average shear stresses from 0 kPa 

to 50 kPa (Table 4.4). The results of these additional tests are presented in Figure 4.17(b), 

showing a behavior similar to the one obtained from the results of the training tests reported 

in Table 4.1. All additional tests were also simulated by Eq. (4-7) to verify the accuracy of 

the analytical method for predicting the mechanical behavior of a given sand. Figure 4.17(b) 

presents the comparison between the calculated effective normal stress (solid blue line) and 

the experimental data (red symbols). It demonstrates that Eq. (4-7) can successfully describe 

the evolution of the effective normal stress for a large range of average shear stresses and 

cyclic shear stresses. 

Table 4.4 Summary of additional tests on Fontainebleau sand ('n0 = 500kPa) 

Test 

No. 
e0 

ave 
(kPa) 

cyc 

(kPa) 
ave/'n0 CSR 

pt 
(kPa) 

NL 

B1 0.619 0 12.5 0 0.025 85.5 1015 

B2 0.626 0 25 0 0.05 81.6 74 

B3 0.612 0 50 0 0.1 89.6 4 

B4 0.613 12.5 25 0.025 0.05 89.0 64 

B5 0.609 25 25 0.05 0.05 91.3 36 

B6 0.619 50 25 0.1 0.05 85.5 1 

 

 

Figure 4.17 Comparisons between simulations and experiments on Fontainebleau sand: (a) 

training tests; (b) additional tests 
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4.5 Conclusions 

The aim of the chapter has been to develop an analytical method for predicting the 

degradation of the effective normal stress of a soil element adjacent to a pile shaft under 

cyclic loading. The development of the analytical formulation was supported by a series of 

constant volume monotonic and cyclic simple shear tests performed on Fontainebleau sand 

specimens. 

Monotonic simple shear tests on Fontainebleau sand with different void ratios and 

different initial normal effective stresses were firstly performed, allowing an empirical 

expression for calculating the shear stress at the phase transformation state to be suggested.  

Then, cyclic simple shear tests were conducted under different initial effective normal 

stresses, cyclic shear stresses, and average shear stresses. Based on these experimental results, 

a cyclic resistance diagram was obtained, providing information concerning the number of 

cycles necessary to reach instability as a function of cyclic and average shear stress levels. 

The shear stress at the phase transformation state took into account the influence of void ratio 

and initial effective normal stress on the number of cycles to instability. 

 A calibration procedure for predicting the degradation of the effective normal stress was 

proposed. Following this procedure, an analytical expression to evaluate the normal effective 

stress degradation was developed with the following variables: void ratio, initial effective 

normal stress, cyclic shear stress, average shear stress and number of cycles. A series of 

additional tests including loading paths with different average shear stresses and cyclic shear 

stresses verified the proposed analytical expression. All comparisons between experimental 

results and simulations indicated that the proposed method is capable of predicting the 

degradation of the effective normal stress under constant volume cyclic shear loading. 

  



 

85 

 

 

 Cyclic volumetric strain accumulation of sand under drained 

simple shear condition 

5.1 Introduction 

During long-term cyclic loading, because of cyclic strain accumulation in the soils 

surrounding piles, the serviceability of a pile foundation will be adversely affected (Figure. 

4.1). According to the classical Mohr-Coulomb criterion, the mobilised shear stress acting on 

the pile shaft depends on the level of the radial effective stress applied to the soil-pile 

interface (Lehane et al. 1993; Jardine et al. 2005), meaning that any change in the radial 

effective stress or strain caused by cyclic loading will greatly affect the bearing capacity of 

the pile foundation. Hence, to explain the basic mechanisms of pile resistance under cyclic 

loading, a large number of field and/or laboratory-based model pile cyclic loading tests have 

been performed over the past few decades. For example, Jardine and Standing (2000, 2012) 

demonstrated that a high level of cyclic loading is highly detrimental to shaft capacity, based 

on their experimental results on an in-situ pile test being subjected to a large amount of axial 

cyclic loading. More recently, Yang et al. (2010), Tsuha et al. (2012a) and Rimoy (2013) 

presented a series of reduced-scale cyclic tests, using the mini-Imperial College pile (ICP), 

that demonstrated the cyclic degradation of radial stresses adjacent to the pile. All cyclic pile 

tests show that the shaft capacity depends on the mechanical response of a soil element 

(strain or excess pore pressure accumulation) adjacent to a pile under cyclic loading (Bekki et 

al. 2016; Le Kouby et al. 2016; Kerner et al. 2017). Thus, it is of great importance to study 

the cyclic behaviour of the soil element around the pile. 

 In a laboratory elementary test, to obtain high-quality and reliable data, in-situ conditions 

should be replicated as closely as possible. Three general types of laboratory equipment, with 

easily operable features, have been widely used to study the soil element’s behaviour around 

the pile, including triaxial tests, direct interface shear tests and simple shear tests. Recently, 

the cyclic behaviour of soils has been widely studied via triaxial tests (Wichtmann et al. 2005; 

Coop and López-Querol 2012; Sim et al. 2013b; Mamou et al. 2017; Sun et al. 2017). 

However, without the principle stress rotation, the real shearing state of soils adjacent to the 

pile still cannot be adequately replicated, which utterly restricts its application to shaft 

degradation. Moreover, Boulon and Foray (1986) suggested that the constant normal stiffness 

condition can reproduce the interface pile-loading boundary conditions. Following this 

proposition, Pra-ai and Boulon (2017) performed a series of cyclic constant normal stiffness 

direct interface shear tests with a large number of cycles, to investigate the progressive 

degradation of normal effective stress. However, the value of normal stiffness depends on the 
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sample depth (through the pressuremeter modulus) and the pile radius, which also limits its 

general application. 

Comparing it against triaxial tests and direct shear tests, Anderson (2009) pointed out 

that the simple shear test has been acknowledged to provide more representative loading 

conditions for shearing of soils adjacent to a pile, such as that the cyclic shear strain develops 

more symmetrically than triaxial tests and can also take into account the principle shear 

rotation during the shear process. That said, the simple shear test is unable to represent the 

relative displacement between the soil and the structure at the interface. A large number of 

undrained or constant volume cyclic simple shear tests have been conducted to investigate the 

cyclic responses of soils, including liquefaction, degradation of both shear stiffness and the 

damping ratio, and effective normal stress (Vaid et al. 2001; Matsuda et al. 2011; Da Fonseca 

et al. 2015; Porcino et al. 2015). However, the strain-related cyclic response has received less 

discussion, and the cyclic strain accumulation behaviour, under the drained or constant 

normal stress condition, remains unclear because of a lack of relevant tests, although it is 

considered an important impact factor for the analysis of shaft capacity (Wichtmann et al. 

2005; Nikitas et al. 2017).  

The aim of this chapter is to analyse the volumetric strain accumulation in sand 

specimens through cyclic simple shear tests under constant normal stress condition. A series 

of drained cyclic simple shear tests was first performed on Fontainebleau sand, which 

includes four initial states with different factors: (1) initial void ratios, (2) initial normal 

stresses, (3) cyclic shear stresses and (4) average shear stresses. Moreover, the experimental 

results were also interpreted to summarise the relationships between volumetric strain 

accumulation and each factor. Finally, the development of an analytical model, to predict the 

cyclic accumulation of volumetric strain, is expounded, taking into account the effect of the 

initial void ratio, initial normal stress, cyclic shear stress and average shear stresses. 

5.2 Experimental investigation 

5.2.1 Testing program 

The drained simple shear testing was ensured by constraining a constant effective normal 

stress 'n on the dry specimen after K0-consolidation. The cyclic shear motion, inducing a 

cyclic shear stress cyc, was generated by the displacement of the bottom pedestal, while the 

top one was horizontally fixed. For cyclic loading, sine cycles with a frequency of 0.2 Hz 

were applied. The volumetric strain v = H/Hc was measured by the change of the specimen 

height (H) during the cyclic process over the height after consolidation (Hc).  

To investigate the effects of different initial states and propose a general analytical model 

for calculating the volumetric strain accumulation, a total of 20 tests were conducted, as 

shown in Table 5.1 These tests can be divided into four groups as follows: (1) different initial 
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void ratio e0 (No. 1–4); (2) different initial normal stress n (No. 2, 5–7); (3) different cyclic 

stress ratio CSR = cyc/n (No. 8–12); and (4) different average stress ratio  = ave/n (No. 2, 

13–15). In addition, other tests (No. 16–20), with initial states that differed from those of the 

first 15, were conducted to validate the analytical model. 

Table 5.1 Experimental program of cyclic simple shear tests 

No. ei e0 Dr /% 
n 

/kPa 

cyc 

/kPa 
ave /kPa  CSR N 

1 0.697 0.668 57.6 416 41.6 0 0 0.1 5000 

2 0.651 0.628 68.2 416 41.6 0 0 0.1 5000 

3 0.592 0.568 84.3 416 41.6 0 0 0.1 5000 

4 0.559 0.539 92.2 416 41.6 0 0 0.1 5000 

5 0.646 0.623 69.7 52 5.2 0 0 0.1 5000 

6 0.649 0.627 68.5 104 10.4 0 0 0.1 5000 

7 0.650 0.619 70.5 208 20.8 0 0 0.1 5000 

8 0.640 0.604 74.8 416 41.6 0 0 0.1 5000 

9 0.635 0.606 74.3 416 50.0 0 0 0.12 5000 

10 0.641 0.609 73.4 416 83.2 0 0 0.2 5000 

11 0.635 0.601 75.4 416 104.0 0 0 0.25 5000 

12 0.639 0.605 74.3 416 133.1 0 0 0.32 5000 

13 0.650 0.628 68.2 416 41.6 20.8 0.05 0.1 5000 

14 0.650 0.631 67.5 416 41.6 41.6 0.1 0.1 5000 

15 0.650 0.629 67.8 416 41.6 83.2 0.2 0.1 5000 

16 0.737 0.703 48.2 416 41.6 0 0 0.1 5000 

17 0.552 0.536 93.4 416 41.6 0 0 0.1 5000 

18 0.649 0.604 74.7 416 20.8 0 0 0.05 5000 

19 0.639 0.606 74.2 416 166.4 0 0 0.4 5000 

20 0.650 0.629 67.8 416 41.6 124.8 0.3 0.1 5000 

Noted: ei is the initial void ratio; e0 is void ratio after consolidation; Dr is relative density; n 

is normal effective stress; cyc is cyclic shear stress; ave is average shear stress and N is 

number of cycles. Furthermore, for the test considering the effect of average shear stress (as 

No.13, 14, 15 and 20), the initial average shear stress ave is reached in drained condition, and 

its void ratio after initial average shearing respectively corresponds to 0.628(No.13), 

0.628(No.14), 0.625(No.15) and 0.622(No.20). 

5.2.2 Cyclic densification 

Based on the experimental results, the cyclic responses of specimens were first studied 

by plotting the stress-strain paths, as seen in Figure 5.1.  Four groups of experimental 

parametric analyses were carried out, as follows: 
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1) For different relative densities Dr (Figure 5.1 a-b), the stress-controlled cyclic 

shearing condition will lead to un-asymmetrical accumulation of shear strain , and 

the looser sand corresponds to a larger level of shear strain accumulation as well as 

of densification; 

2) For different normal stress levels 'n (Figure 5.1 c-d), with the increase in the initial 

normal stress 'n, the magnitude of shear strain accumulation rises and also 

produces a larger level of densification for sand; 

3) For different cyclic shear stress ratios (CSR) (Figure 5.1 e-f), it may be observed 

that the shear strain  and void ratio e are highly sensitive to the amplitude of cyclic 

shear stress cyc, in which a greater magnitude of CSR will lead to greater shear 

strain accumulation as well as a larger degree of densification, especially in the 

initial five cycles; 

4) For different average shear stress ratios  (Figure 5.1 g-h), an increase in average 

shear stress will promote the accumulation of shear strain  and restrain the 

magnitude of densification. 

Overall, cyclic tests reveal that the volumetric strain is regularly accumulated during 

cyclic loading, and that it is possible to formulate the volumetric strain accumulation based 

on different effects (see details of the parametric study in section 5.3). 
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Figure 5.1 Summary of drained cyclic simple shear results: (a)-(b) comparisons by different 

initial relative densities; (c)-(d) comparisons by different effective normal stresses; (e)-(f) 

comparisons by different cyclic shear stress ratios and (g)-(h) comparisons by different 

average shear stress ratios.  

5.2.3 Influence of strain accumulation to post-cyclic behaviour 

 A series of monotonic simple shear tests was also subsequently conducted after cyclic 

testing phases (see Table 5.1), to investigate the influence of strain accumulation to the peak 

shear strength ratio and phase transformation stress ratio.  

 Figure 5.2 presents the experimental results including the stress-strain paths (--v) and 

also the stress-dilatancy relation expressed by the stress ratio (/n) versus strain increment 

ratio (dv/d). According to these results, a unique critical state can be found for different 

initial conditions. Additionally, during long-term cyclic loading, volumetric strain gradually 

accumulates and the specimen becomes denser (see Figure 5.2(b, e, i and l)). Such cyclic 

densification enhanced the peak shear stress and also influenced the stress-dilatancy as shown 

in Figure 5.2(c, f, j and m) with the amount of dilation range greater than the contraction 

range. Moreover, Figure 5.2(j) shows that the larger cyclic shear stress ratio CSR corresponds 

to steeper slope of strain increment ratio. For instance, no strain contraction occurs for test 

No.8, which was conducted after the largest cyclic shear stress cyc=160kPa.  
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Figure 5.2 Summary of drained monotonic simple shear after 5000 cycles: (a)-(c) 

comparisons by different initial relative densities; (d)-(f) comparisons by different effective 

normal stresses; (h)-(j) comparisons by different cyclic shear stress ratios; (k)-(m) 

comparisons by different average shear stress ratios 
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5.3 Interpretation of experimental results  

5.3.1 Effect of relative density  

The effect of the relative density Dr, varying from 0.576 to 0.922 on strain accumulation 

v, was studied, based on tests (No. 1–4) with constant cyclic shear stress and normal stress. 

Figure 5.3(a) demonstrates that sand with lower relative density has a higher strain 

accumulation, while Figure 5.3(b) presents the volumetric strains v against the relative 

density Dr for selected numbers of cycles corresponding to N = 3, 10, 100, 1000, 2000 and 

4000 respectively. Conventionally, the positive volumetric strain is for describing contractive 

behaviour and the negative volumetric strain is for describing dilative behaviour. This shows 

that the accumulated volumetric strain v decreases linearly with the increase in relative 

density for each selected number, which can be expressed as: 

  
1

r

c

v r

ref ref

v D r

D

D



 −

 
=  

 

 (5-1) 

where c1 is the slope of the curve in the double-logarithmic plot; this can be considered as the 

same for different numbers of cycles. For convenience, the reference relative density is 

considered as 1ref

rD = . Then six reference volumetric strains 
r-

ref

v D  at 1ref

rD =  in Figure 5.3(b) 

can be obtained for six selected numbers of cycles N, which is plotted in Figure 5.3(c). Based 

on this linear relationship, the reference volumetric strain can be expressed by: 

   ( )1 log 1
r

ref

v D n N − = +  (5-2) 

in which n1 is the slope of the curve in the semi-logarithmic plot, with null volumetric strain 

at zero number of cycles. 

 

Figure 5.3 volumetric strain accumulation with different relative densities: (a) volumetric 

strain versus number of cycles; (b) volumetric strain versus relative density; (c) reference 

volumetric strain versus number of cycles 
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Substituting Eq.(5-2) in Eq.(5-1), the volumetric strain, evolving with the number of 

cycles and considering the effect of initial density, is finally expressed by: 

  ( )1

1 log 1
C

v rn D N = +  (5-3) 

5.3.2 Effect of normal stress level 

The effect of the normal stress on strain accumulation, varying from 52 to 416kPa, was 

studied with a constant cyclic stress ratio (CSR = 0.1) and relative density (Dr = 0.68~0.7) 

based on tests (No. 2, 5–7). Figure 5.4(a) shows that sand with a higher normal stress 

corresponds to a higher volumetric strain accumulation; Figure 5.4(b) presents the volumetric 

strains v versus the ratio of normalised normal stresses over atmospheric pressure (pat = 

100kPa) in each selected number of cycles, corresponding to N = 2, 10, 100, 1000, 2000 and 

4000 respectively. This shows that the accumulated volumetric strain v increases linearly 

with the increase in normal stress for each selected number, which can be expressed as: 

  
2

'

'

n

C

v n

ref

v atp

 

 −

 
=  

 

 (5-4) 

where C2 is the slope of the curve in a double-logarithmic plot, which can be considered 

similar for different numbers of cycles. Six reference volumetric strains - 'n

ref

v   at n = pat in 

Figure 5.4 (b) can be obtained for six selected numbers of cycles N.  

 

Figure 5.4 volumetric strain accumulation with different normal stress level: (a) volumetric 

strain versus number of cycles; (b) volumetric strain versus normal stress level; (c) reference 

volumetric strain versus number of cycles 

 Figure 5.4(c) presents the relationship between the reference volumetric strain and the 

cyclic number N in semi-logarithmic coordinates, which can be expressed by: 
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where n2 is the slope of the curve in a semi-logarithmic plot with null volumetric strain at 

zero number of cycles. The evaluation of volumetric strain with number of cycles, 

considering the effect of normal stress, can ultimately be expressed as follows, 

  ( )
2

2

'
log 1

C

n
v

at

n N
p




 
= + 

 

 (5-6) 

5.3.3 Effect of cyclic shear stress ratio 

The effect of CSR (= cyc/n) on volumetric strain v, varying from 0.1 to 0.32, was 

studied based on tests (No. 8–12) with constant normal stress (n = 416kPa), null average 

shear stress and constant relative density (Dr = 0.73~0.75). Figure 5.5(a) shows that sand with 

a higher cyclic stress ratio corresponds to a higher rate of cyclic volumetric strain 

accumulation. To minimise the effects of normal stress and relative density, the volumetric 

strain v was first normalised by the density-related function (Eq.(5-1)) and normal stress-

related function (Eq.(5-4)), as shown in Eq.(5-7). Then, the normalized volumetric strain 
v

could be used to compare the cases between different CSRs. 

  
( ) 21 '

v
v CC

r n atD p





=


  (5-7) 

Figure 5.5(b) shows the normalised volumetric strains v  versus the CSR for selected 

numbers of cycles, corresponding to N = 3, 10, 100, 1000, 2000 and 4000, respectively. This 

denotes that the relationship between normalised volumetric strains and CSRs for a selected 

cyclic number can be expressed as follows: 

  -

3

ref
v CSR

v C CSR


 =   (5-8) 

where C3 is a constant corresponding to the value when the CSR equals one, and the slope 

corresponds to the reference volumetric strain -

ref

v CSR . Six reference volumetric strains -

ref

v CSR  

were plotted against the selected numbers of cycles N in Figure 5.5 (c), which can be 

expressed by Eq.(5-9): 

  ( ) 5

- 4

Cref

v CSR C N =   (5-9) 

where C4 and C5 are CSR-related parameters obtained by fitting the curve. 

 The accumulated volumetric strain, taking into account the effect of CSR, can finally be 

derived by substituting Eq.(5-9) into Eq.(5-8), as follows: 

  
( ) 5

4

3

C
C N

v C CSR


=    (5-10) 
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Figure 5.5 volumetric strain accumulation with different cyclic stress ratio: (a) volumetric 

strain versus number of cycles; (b) normalized volumetric strain versus cyclic shear stress 

ratio; (c) reference volumetric strain versus number of cycles 

5.3.4 Effect of average shear stress ratio 

The effect of the average shear stress ratio  (= ave/n) on volumetric strain v, varying 

from 0 to 0.2, was studied based on tests (No. 2, 13–15) with constant normal stress and CSR. 

The initial average shear stress is reached in drained condition. Figure 5.6 (a) shows that sand 

with a higher average shear stress corresponds to a lower rate of volumetric accumulation. 

Figure 5.6 (b) presents the normalised volumetric strains v  versus the average stress ratio, 

in the selected numbers of cycles corresponding to N = 2, 10, 100, 1000, 2000 and 4000. The 

accumulated, normalised volumetric strain v  can be expressed by Eq.(5-11): 

  ( )
0

ref

v v v 
   −=

= +   (5-11) 

where ( )
0v 


=

 is the accumulated volumetric strain for the case with zero average shear stress. 

The reference volumetric strain -

ref

v   corresponds to the slope of normalised volumetric 

strains versus average shear stress ratio for each selected number of cycles. This shows that 

the slope decreases from positive to negative with the increase in numbers of cycles. 

 Figure 5.6(c) presents the relationship between the six reference volumetric strains 
ref

v  −

and the selected numbers of cycles N, which can be fitted by the linear expression in semi-

logarithmic coordinates, per Eq.(5-12): 

  ( )6 7log 1ref

v C N C − = + +  (5-12) 

where C6 and C7 are average shear stress ratio-related parameters. Substituting Eq.(5-12) into 

Eq.(5-11), the volumetric strain, evolving with the number of cycles and considering the 

effect of average shear stress, is finally expressed by Eq.(5-13): 
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Figure 5.6 Volumetric strain accumulation with different average shear stress ratio: (a) 

volumetric strain versus number of cycles; (b) normalized volumetric strain versus average 

shear stress ratio; (c) reference volumetric strain versus number of cycles 

5.4 Analytical model of volumetric strain accumulation  

Based on the previous parametric study, we can conclude that the cyclic volumetric 

strain accumulation depends on four key factors: relative density, normal stress level, CSR 

and average shear stress ratio. Thus, a general analytical model can be derived by combining 

Eq.(5-7), (5-10) and (5-13) as follows: 

  ( )( )
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1 4

3 6 7
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C C Nn
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at

D C CSR C N C
p


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 =  + +   
 

  (5-14) 

which has seven related parameters, as summarised in Table 5.2, that are calibrated by 

training tests, as shown in Figures 5.3-5.6. 

Table 5.2 Summary of the empirical function with parameters of Fontainebleau sand  

Function  Parameters 

Dr related function

( ) 1C
ref

den r rf D D=  
C1 -0.8 

n related function 

( ) 2
' '

C

nor n atf p=  
C2 0.18 

CSR related function 
5

4

3

C
C N

CSRf C CSR


=   

C3 0.031 

C4 1.715 

C5 -0.100 

 related function 

( )6 7lnf C N C = +   

C6 -0.0013 

C7 0.0043 

 To validate the performance of the proposed analytical model, the previous training tests 

were selected to replicate the volumetric strain accumulation during cyclic loading, as shown 
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in Figure 5.7. Through comparison of the experimental results in Figures 5.3-5.6, it is shown 

that the calculated curves are in good agreement with the experimental results. Moreover, the 

basic characteristics of volumetric strain accumulation, considering the four effects, can be 

summarised as follows: 

1) For different relative densities (Dr) with CSR = 0.1, the accumulation ratio 

gradually decreases with the increase in density (Figure 5.7(a)).  

2) The effect of the initial normal stress n is similar to the effect of relative densities 

(Dr); that is, the accumulation ratio gradually rises with increasing normal stress 

(Figure 5.7(b)). 

3) For CSRs, a greater value will produce a larger accumulation from the first cycle to 

the subsequent 5000 cycles, which means that the volumetric strain is highly 

sensitive to the CSR throughout the cyclic process (Figure 5.7(c)).  

 

 

Figure 5.7 Performance of analytical model: (a) calibration with different relative densities; 

(b) calibration with different effective normal stresses; (c) calibration with different cyclic 

shear stress; (d) calibration with different average shear stress 
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5.5 Validation  

 Furthermore, five no-training tests (No. 16–20) were simulated, based on the calibrated 

parameters, to verify the accuracy of the analytical method. A good agreement between the 

predictions and experiments can be found in Figure 5.8, which indicates that the analytical 

model can successfully describe the cyclic responses in terms of volumetric strain. 

 Figure 5.9 presents the experimental results regarding evolution of the volumetric strain 

with cyclic loading from 10 to 4000 cycles, based on six groups including different 

combinations of the key factors Dr, n, CSR and . The volumetric strain surfaces, as 

calculated by the analytical model, were first plotted in conjunction with the experimental 

results. A good agreement can be observed between the calculated surfaces and the results, 

which means that the latter can be extended into multi-dimensional space by the analytical 

model. Therefore, the model can be used to sensitively study the combined effects.  

 According to the six groups’ results, we may see that, with increasing cyclic numbers, 

the calculated volumetric strain-related surface gradually enlarges along the axis of 

volumetric strain and gradually shrinks along the axis of the average shear stress ratio . The 

most sensitive combined-effects group is a combination of Dr and CSR, as shown in Figure 

5.9(b), in which the surface enlarges rapidly and forms a highly steep slope along both the Dr 

and CSR direction. In addition, the least sensitive combined-effects group is the combination 

of Dr and n, as seen in Figure 5.9(f) where the volumetric strain surface is enlarged almost 

in parallel with the cyclic number. 

 

Figure 5.8 Validation of the analytical model by five additional tests No.16-20 

No.19
No.17
No.16

No.20
No.18 Eq.(5-14)
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Figure 5.9 Volumetric strain accumulation evolution with 10, 100 and 4000 cycles for 

different effects of (a)  and CSR, (b) Dr and CSR, (c) n/pat and CSR, (d) Dr and , (e) 

n/pat and  and (f) n/pat and Dr 

5.6 Conclusion  

This work is focused on an investigation of the strain accumulation behaviour of a soil 

element subjected to a long-term cyclic loading, which can be used to interpret the cyclic 

strain accumulation of soil adjacent to the pile. To achieve this objective, certain key 

conclusions were drawn: 

1) The constant normal stress cyclic simple shear tests can replicate the key response 

of cyclic strain accumulation considering different initial states, namely relative 

density, normal stress, cyclic shear stress and average shear stress.  

2) The cyclic experimental results show that the volumetric strain regularly 

accumulates under different initial states, which indicates that it is possible to 

formulate the cyclic strain accumulation based on the four effects. 

3) The interpretation of results indicates that the effect of the four key factors can be 

respectively formulated through a simple expression. 

4) An analytical model of volumetric strain accumulation is developed, considering 

the abovementioned four effects. The parameters can be calibrated based on training 

tests. The applicability of the model is validated by predicting the remainder of the 

tests with the calibrated parameters. 

5) The multi-dimensional sensitivity analysis can be performed based on the analytical 

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)
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model. The accumulation of volumetric strain is greatly enhanced by CSR and 

resisted by average shear stress. The most sensitive effects-combined group is a 

combination of Dr and CSR; the least sensitive effects-combined group is the 

combination of Dr and n. 
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 Modelling of cyclic behaviour of sand-pile foundation 

6.1 Introduction 

Nowadays, the finite element method (FEM) is considered as a useful tool in 

engineering design. The performance of finite element simulations depends chiefly on the 

constitutive models adopted. In past decades, pile tests have been simulated by employing 

different constitutive models, such as the Drucker–Prager (Susila and Hryciw 2003), Mohr–

Coulomb (Susila and Hryciw 2003), critical-based (Kouretzis et al. 2014) and hyperplastic 

models (Qiu et al. 2011; Hamann et al. 2015). However, until now, the effect of the inherent 

anisotropy during principal stress rotation has not been considered in these simulations. 

Accordingly, the previous enhanced SIMSAND model was adopted and modified with a 

view to incorporating a shear stress reversal technique so as to reproduce the cyclic effect. 

Undrained and drained cyclic triaxial tests under constant p and under constant confining 

stress on Toyoura sand were first simulated to validate the performance of the model. The 

model was further evaluated by simulating cyclic triaxial and simple shear tests on 

Fontainebleau sand. After that, a series of model pile tests were simulated and the mechanical 

responses of sand surrounding the pile were also examined. 

6.2 Incorporation of the shear stress reversal technique 

 The foregoing SIMSAND model was developed based on experimental sand behaviour, 

considering the sample under monotonic loading. When the direction of the shear stress 

changes during loading, the stress reversal effect on the stress–strain relationship needs to be 

incorporated. 

 The stress state and plastic strain at the moment of shear reversal can be determined as 

the reversal stress state (marked as 'Rij ) and the reversal plastic strain state (marked as 
R

ij ). 

These two mechanical state variables can be updated when the shear reversal happens again 

which significantly influences subsequent shear behaviour (see Figure 6.1). As a consequence, 

the yield function has been revised to be 

  ( )( )
3

2

R R

ij ij ij ijf r r r r H= − − −   (6-1) 
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where rij=sij/p, with sij=ij–pij as the mobilized stress ratio; '
R R R

ij ijr s p= is the mobilized 

stress ratio at the moment of stress reversal and H is the hardening rule, which can be 

expressed as follows: 

  
* *

*

p

p d

p

p d

M
H

k






=

+
 (6-2) 

 The hardening rule given in Eq.(6-2) indicates the stress reversal method for the 

hardening rule used for both loading, unloading and reloading, with the peak stress ratio 
*

pM  

and deviatoric plastic strain 
*p

d  at stress reversal able to be expressed by Eq.(6-3), in which 

3pR pR pR

ij ij kk ije   = −  is the plastic deviatoric strain tensor at the moment of stress reversal, 
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where the unit direction of the deviatoric stress increment nij can be calculated as follows: 
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 The revised expression of the flow rule (see Eq.(6-5)) implies that the amount of dilation 

is different upon shear reversal,  
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where the stress ratio corresponding to the phase transformation line 
*

ptM  at the moment of 

stress reversal in the p–q space can be calibrated by Eq.(6-3). 

 The estimation of Lode angle for calculating Mp and Mpt is thus modified to be 
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ij/2, J

3=r
ijr

jkr
ki/3, where r

ij=rij–rR
ij. 

 Such a stress reversal technique is similar to that proposed by Gajo and Wood (1999), 

and also similar to that used in Masing’s rule, in bounding surface plasticity (Taiebat and 

Dafalias 2008) and in subloading surface plasticity (Yamakawa et al. 2010). 
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Figure 6.1 Principle of stress reversal in loading and unloading after (Yin et al. 2013) 

6.3 Model validation on Toyoura sand 

 Different triaxial tests under cyclic loadings on Toyoura sand were selected for 

validation of the model. Toyoura sand is a uniform fine quartzic sand that consists of 

subrounded to subangular grains. It has been widely tested (Miura and Yamanouchi, 1975; 

Miura et al., 1984; Pradhan, 1989; Verdugo and Ishihara, 1996; Yoshimine et al., 1998; 

Uchida and Stedman, 2001). Toyoura sand has a maximum void ratio of 0.977, a minimum 

void ratio of 0.597 and a specific gravity of 2.65. The model parameters of Toyoura sand 

summarised in Table 2.6 (see Chapter 2). 

6.3.1 Constant mean effective pressure cyclic triaxial tests 

 Paradhan (1990) conducted drained cyclic triaxial tests on Toyoura sand. However, the 

sand used by Paradhan (1990) came from a batch different from the one used by Verdugo and 

Ishihara (1996). Thus the index properties were slightly different. The same values of the 

parameters determined from the tests of Verdugo and Ishihara (1996) were used to simulate 

the drained cyclic test, except for the value of c=32.3° in compression according to the 

drained test with loading–unloading and reloading. 

 Figures 6.2(a)–(c) show the comparison between experiments and predictions for the 

cyclic triaxial test on loose Toyoura sand with an initial void ratio e0=0.845 under constant 

p=98 kPa. Figures 6.2(d)–(f) show the comparisons for a dense Toyoura sand with an initial 

void ratio e0=0.653 under constant p=98 kPa. 
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Figure 6.2 Comparison between experimental and numerical results of constant-p drained 

cyclic tests on Toyoura sand: (a)-(c) loose specimen and (d)-(f) dense specimen 

6.3.2 Drained cyclic triaxial tests 

 Figure 6.3 shows the comparisons between experiments and predictions for the drained 

cyclic triaxial test on loose Toyoura sand with an initial void ratio e0=0.863 under constant 

confining stress p0=98 kPa. Good agreement was achieved between experimental data and 

numerical simulations. The slight difference in the volumetric strain might be the result of 

sample differences, because the values of the parameters used for predicting this test were 

determined by a different test. The enhanced model captured the overall trend: At small strain 

amplitudes, loose sand densifies and dense sand dilates. 

 

Figure 6.3 Comparison between experimental and numerical results for drained cyclic triaxial 

tests on Toyoura sand: in (a) stress ratio versus deviatoric strain, (b) void ratio versus 

deviatoric strain and (c) void ratio versus stress ratio 

(a) (b) (c)

e0 = 0.845

p = 98 kPa

(d) (e) (f)

e0 = 0.653

p = 98 kPa

(a) (b) (c)

e0 = 0.863

p0 = 98 kPa
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6.3.3 Undrained cyclic triaxial tests 

 Uchida and Stedman (2001) conducted undrained cyclic triaxial tests on Toyoura sand. 

In each test, an axial strain of 1% magnitude was applied in each cycle until liquefaction was 

obtained. The samples were prepared at relative densities of 30% and 50% and subjected to 

two initial confining pressures of 200 kPa and 400 kPa. The experimental and numerical 

results for the two samples are shown in Figure 6.4. The model parameters calibrated from 

the monotonic tests were used for the predictions of the cyclic tests. The model reproduces 

the general trend as depicted by the test. Despite the difference in the evolution of the mean 

effective stress between experiments and simulations, which may be attributed to the slight 

difference in properties (such as anisotropy) among sands from different batches, the fact that 

a looser Toyoura sand had a greater liquefaction potential under higher confining pressure 

was well determined by the model. 

 

 

Figure 6.4 Comparison between the experimental and numerical results of undrained triaxial 

tests under cyclic loading on Toyoura sand with different initial void ratios: in (a) and (c) 

stress path in mean effective stress versus deviatoric stress; (b) and (d) deviatoric stress 

versus deviatoric strain  

 Simulations of undrained cyclic tests at constant stress amplitude with qmax=55 kPa and 

qmin= –55 kPa (noted as qcyc=55 kPa for symmetric loading condition) were conducted on 

samples with different initial void ratios by using the foregoing values for the model 

parameters. As expected, the dense sample exhibited a cyclic mobility phenomenon (Figs. 

6.5(a)–(b)), and the medium-dense sample exhibited also a cyclic mobility with higher 

(a) (b)

(c) (d)

e0 = 0.863

Dr = 30%

e0 = 0.863

Dr = 30%

e0 = 0.787

Dr = 50%

e0 = 0.787

Dr = 50%

(a) (b)

(c) (d)

e0 = 0.863

Dr = 30%

e0 = 0.863

Dr = 30%

e0 = 0.787

Dr = 50%

e0 = 0.787
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deformations and reached an almost liquefied state in fewer cycles than required for the dense 

sample (Figs. 6.5(c)–(d)). The loose sample reached complete liquefaction with large 

deformations in a few number of cycles (Figs. 6.5(e)–(f)). Thus the proposed model was able 

to predict the dependence of liquefaction potential on relative density of sand. Note that to 

allow more precise simulation of undrained cyclic tests, the model still needs further 

enhancement, such as the intergranular strain effect suggested by Niemunis and Herle (1997).  

 

 

 

Figure 6.5 Comparison between the experimental and numerical results of undrained triaxial 

tests under cyclic loading on Toyoura sand with different initial void ratios: in (a), (c) and (e) 

stress path in mean effective stress versus deviatoric stress; (b), (d) and (f) deviatoric stress 

versus deviatoric strain 
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6.4 Model validation on Fontainebleau sand 

6.4.1 Drained cyclic triaxial tests at constant-p 

 Phong (1980) conducted drained cyclic triaxial tests at constant p on Fontainebleau sand. 

Figure 6.6 shows the comparison between experiments and predictions for sand with an 

initial void ratio e0 = 0.72 under constant p = 200 kPa, (model parameters of Fontainebleau 

sand summarised in Table 3.2). A general agreement was achieved between experimental 

data and numerical simulations. The difference in the stress-strain might be due to sample 

differences since the values of the parameters used for predicting this test were determined by 

different laboratory, conducted by Andria-Ntoanina et al. (2010). Also, due to lack of 

considering the small strain effect after the stress reversal, the simulated initial stiffness is 

smaller than the experimental results, as dash line in Figure 6.6(a) (KOSEKI 1998). 

Therefore, to consider the effect of small strain stiffness during the stress reversal stage, the 

parameter kp was modified by 0.5 times of the initial value, and parameters K0 and G0 were 

also modified by two times of the initial values. It shows a better result than the simulation 

without considering small strain stiffness. 

 

 

Figure 6.6 Comparison between experimental and numerical results of constant-p drained 

cyclic tests on Fontainebleau sand: (a)-(b) experiment, and (c)-(d) simulation 

6.4.2 Undrained cyclic triaxial tests 

 Andria-Ntoanina et al. (2010) conducted a series of undrained cyclic triaxial tests on 

Fontainebleau sand. In each test, the cyclic deviatoric stresses qcyc (=100, 55, 80 and 48 kPa) 

were applied to the sample with 0.1 Hz frequency until liquefaction was obtained. The 
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samples were prepared at relative densities of 65% and 44% and subjected to two initial 

confining pressures of 200 kPa and 400 kPa. The experimental and numerical results for the 

two samples are shown in Figure 6.7 (for medium-dense sand) and Figure 6.8 (for loose sand). 

The model parameters calibrated from the monotonic tests were used for the predictions of 

cyclic tests(see Chapter 3). The model reproduces the general trend as depicted by the test. 

From comparison between tests and simulations, the difference in the evolution of the mean 

effective stress between experiments and simulations can be attributed to the slight difference 

in properties (such as anisotropy) among sands from different batches. In fact, the looser 

Fontainebleau sand has a greater liquefaction potential that can be well described by the 

model. 

 

 

 

 

Figure 6.7 Comparison between experimental and numerical results of undrained cyclic tests 

on medium-dense Fontainebleau sand: (a)-(d) with qcyc=100kPa and (e)-(h) with qcyc=55kPa  
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Figure 6.8 Comparison between experimental and numerical results of undrained cyclic tests 

on loose Fontainebleau sand: (a)-(b) experiment with qcyc=80kPa, (c)-(d) simulation with 

qcyc=80kPa (e)-(f) experiment with qcyc=48kPa and (g)-(h) simulation with qcyc=48kPa 

6.4.3 Undrained cyclic simple shear tests 

 The undrained cyclic simple shear tests were simulated to validate the performance of 

the enhanced cyclic SIMSAND model. The principal stress rotation effect was also 

considered in the model by the jointed parameters 1c  and 2c (see Chapter 3). The samples 

were prepared at relative densities of 59%, initial normal stress of 416 kPa and cyclic shear 

stress of 20.8 kPa and were subjected to three average shear stresses of 0 kPa, 20.8 kPa and 

41.6 kPa. The experimental and numerical results for the three simple shear tests are shown 

in Figure 6.9.  
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 For the simulation of symmetrical stress-controlled cyclic simple shear test as seen in 

Figure 6.9(a-d), the number of cycles to liquefaction in general agrees with the tests, but the 

shear strain after liquefaction is slightly underestimated. Additionally, for the non-

symmetrical cyclic simple shear test with the stress reversal condition as seen in Figure 6.9(e-

h), the liquefaction behaviour can also be well simulated, which is also combined with slight 

non-symmetrical cyclic shear strain accumulation. Furthermore, for the cyclic simple shear 

test with the non-stress reversal condition as Figure 6.9(i-l), the cyclic mobility behaviour 

(shear strain accumulation) can also be well simulated. Therefore, the cyclic behaviour of 

stress-controlled simple shear tests can be generally captured by the cyclic model. 
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Figure 6.9 Experimental and numerical results of undrained cyclic tests on medium dense 

Fontainebleau sand on 416kPa initial normal stress: (a)-(d) comparison on condition (ave = 

0kPa, cyc = 20.8kPa), (e)-(h) comparison on condition (ave = 10.4kPa, cyc = 20.8kPa) and 

(e)-(h) comparison on condition (ave = 41.6kPa, cyc = 20.8kPa) 

6.4.4 Drained cyclic simple shear tests 

 The strain-controlled cyclic simple shear tests were also conducted on loose sand with 

initial void ratio of 0.70 and initial normal stress n0 of 108 kPa so as to study the contractive 

and dilative behaviour of sand during the shearing condition, as shown in Figure 6.10(a)-(c). 

The tests were simulated by the cyclic enhanced SIMSAND model, as shown in Figure 

6.10(d)-(f). General agreement was achieved between experiments and numerical 

simulations, demonstrating that the cyclic model can be used to describe the basic trend 

whereby loose sand densifies and dense dilates. Note that for tests the stiffness at small 

strains is over-predicted, which can be further improved by considering the feature of small 

strain stiffness. 

 Stress-controlled cyclic simple shear tests with initial conditions of ave=0 kPa, cyc=41.6 

kPa, n0=416 kPa and e=0.606 (see Chapter 5) were also simulated by the cyclic model 

shown in Figure 6.11. Comparison of experimental and numerical results shows that the 

predicted results of volumetric strain slightly exceed the experimental results. The main 

reason for this difference between experiment and simulation should be relating to the over-

predicted stiffness at small-strain level. Therefore the model needs further enhancement.  
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Figure 6.10 Comparison of experimental and numerical results of strain-controlled drained 

cyclic simple shear tests on loose Fontainebleau sand: (a-c) experiment and (e-g) simulation  

 

 

Figure 6.11 Comparison of experimental and numerical results of stress-controlled drained 

cyclic simple shear tests on medium dense Fontainebleau sand: (a-b) experiment and (c-d) 

simulation 
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6.5 Simulation of a mini-scale model pile penetration test 

6.5.1 3SR mini-scale model pile and FE modelling 

Mini-scale model pile penetration tests were conducted at 3SR Laboratory  in Grenoble, 

using micro computed X-ray tomography (CT) for analysis of the displacement field around 

the mini-scale pile with a pseudotriaxial cell capable of applying lateral confinement pressure 

to the sand sample (Silva, 2014). A closed-ended conical model pile of apex angle 60°, 5 mm 

in diameter, was installed on the sand by monotonic loading under an isotopic confinement 

pressure, as seen in Figure 6.12. 

According to the 3SR mini-scale model pile test, an axis-symmetric FE model with 

3,500 elements was generated, as illustrated in Figure. 6.13. The overall model size is 70 mm 

in diameter and 100 mm high (e.g. the same size than the tested sample). The bottom and top 

sides are fixed in both the vertical and the horizontal directions. The lateral side is free. The 

sand was discretised by four-node axisymmetric elements having one reduced integration 

point (CAX4R) in ABAQUS. Compared to sand, the deformation of the pile is negligible, so 

the pile was modelled as a rigid body having the same diameter and conical tip as the model 

pile in Figure 6.13. The ABAQUS/Explicit with Arbitrary Lagrangian-Eulerian (ALE) 

method was adopted for simulating the pile penetration tests and to deal with the mesh 

distortion problem with large deformation of at the edge of cone. 

Pile-soil interaction was simulated as surface-to-surface contact using a classical 

Coulomb friction law. The friction coefficient was set to =tan(/2)=0.3. The total 

penetration displacement was 50 mm with a low penetration rate of 0.5 mm/s, in order to 

avoid numerical issues related to the sudden application of high strain rates and inertial 

effects. According to the experimental program, the initial stress (100 kPa and 200 kPa) was 

generated by applying lateral confinement pressure on Fontainebleau sand NE34 (relative 

density of approximately 70% corresponding to e0=0.62), which is consistent with the mini-

scale model pile tests. The pile penetrated into sand at a rate of 0.1 mm/s (Illanes 2014) up to 

50 mm. The parameters of Fontainebleau NE34 sand in Table 3.2 were used for the 

simulation 
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Figure 6.12 Details of 3SR mini-scale model pile tests (Silva 2014), (a) model pile with 

micro-CT scan apparatus and (b) geometry of model-pile penetration tests 

 

Figure 6.13 Finite element analysis of 3SR mini model pile 

6.5.2 Simulation results 

Figure 6.14 shows the simulated results of load-displacement curves during pile driving 

into sand, with total confining stresses h of 100 kPa and 200 kPa. Similar simulations 

without incorporating parameters (as 1c =0 and 2c =0) were also conducted to highlight the 

model performance by incorporating the inherent anisotropy. The simulations and 

experiments were compared, revealing that the simulated results obtained using incorporating 

parameters 1c =0.18 and 2c =2.0 generally agree with the experimental results. It can be seen 

that the principal stress rotation of sand that occurred during the penetration would 

dramatically decrease pile resistance. The good agreement between the simulation and 

measurement was achieved using the proposed numerical platform in conjunction with the 

enhanced SIMSAND model. Moreover, the simulated result for the case of 200 kPa confining 

pressure shows a slight difference in the penetration load as seen in Figure 6.14(b), which 

may be attributed to the effect of the initial fabric anisotropy among sand from different 

batches. 

(a) (b)

Mini-pile (initial) Mini-pile (penetrating 50mm)

sand

h

3636 

elements
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Figure 6.14 Comparison between experiment and simulation of 3SR mini model pile test with 

confining pressure of (a) 100kPa and (b) 200kPa 

 Figure 6.15 presents X-ray based measurements from a micro-CT scan apparatus, 

showing incremental vertical and horizontal strains in sand after a pile head displacement of 2 

mm. The vertical and horizontal strain profiles of FE simulation results when the pile head 

penetrated 2 mm into sand were also plotted to compare with experimental results. The zones 

of vertical and horizontal strain distributions surrounding the cone agree well with the 

experimental results, showing that a high vertical contraction and horizontal dilation develop 

beneath the cone when the pile continuously penetrates into the sand. 

 
Figure 6.15 Comparison of strain profiles between experiment and simulation (a) vertical 

strain and (b) horizontal strain 
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6.5.3 Parametrical study  

To investigate the influence of inherent anisotropy on pile resistance, a parametric 

analysis was further conducted based on a simulation of the mini-scale model pile test. A 

series of simulations were conducted by changing only the parameter 1c  (=0, 0.1 and 0.2, 

which may correspond to different shearing strengths for the material). The simulated pile 

load against the penetration depth with different values of 1c  is shown in Figure 6.16(a). It 

can be seen that the cone resistance decreases with an increasing value of 1c . 

Similar simulations were also conducted by changing only the parameter 2c  (=0.5, 1 and 

2). The simulated pile load against the penetration depth is shown in Figure 6.16(b) with 

different values of 2c . It can be seen that the cone resistance decreases with an increasing 

value of 2c  (representing the great degradation of shearing stiffness). 

Overall, the effect of inherent anisotropy during principal stress rotation by changing 

parameters 1c  and 2c  has a significant influence on the cone resistance. In summary, 

parameter 1c  controls the degradation rate of shear strength, and 2c  controls the degradation 

rate of shearing stiffness. These results reveal the simulation trend of simple shear tests. 

 

Figure 6.16 Influence of inherent anisotropy related parameters on pile resistance to 

investigate: (a) the effect of parameter 1c , and (b) the effect of sensitivity of parameter 2c  

6.6 Simulation of ICP model pile penetration test 

6.6.1 ICP model pile and FE modelling 

The model test of pile installation was conducted in the 3SR  calibration chamber 

(Rimoy 2013). This test employed the Imperial College Pile (ICP): a pile scaled down to 36 

mm outer diameter with a standard apex angle 60° closed-ended conical base, and 1.5 m long 

suitable for the laboratory calibration chamber testing (Jardine et al. 2009). The model 

experiment (ICP07) is illustrated in Figure 6.17. The soil used was Fontainebleau sand NE34. 

(a) (b)

1c =

2 0c =

2c =
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An initial vertical stress of 150 kPa was applied on the top of sand by an upper membrane. 

The pile installation was displacement controlled at 2 mm/s. The pile resistance and the stress 

and strain profiles surrounding the driven pile were measured by transducers. 

 

Figure 6.17 General arrangement for pile test (Rimoy 2013) 

An axisymmetric finite element model with 5,700 elements was generated, as illustrated 

in Figure 6.18. The overall model size is 0.6 m width and 1.5 m height, large enough to avoid 

boundary constraints. The bottom side is fixed in both the vertical and the horizontal 

directions. The left and right sides are fixed only in the horizontal direction. The top side is 

free. The soil was modelled by four-node axisymmetric elements with one reduced 

integration point (CAX4R) in ABAQUS. Compared to that of soil, the deformation of the pile 

is negligible, so it was modelled as a rigid body having the same diameter and conical tip as 

the model pile. Four sensors were positioned surrounding the pile, with 2, 3, 5 and 8 pile radii 

(R). 

 

Figure 6.18 Modelling of ICP07 penetration tests 
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The initial stress was generated by self-weight with the unit weight of the soil  =16.3 

kN/m3 under K0=1–sin=0.48, consistent with the model test (Yang et al. 2010). The pile–

soil interaction was simulated by surface-to-surface contact with a classical Coulomb friction 

law. The friction coefficient was set to  = tan(/2) = 0.3. The total penetration displacement 

was 100 mm with a low penetration rate of 0.5 mm/s, thus to avoid numerical issues related 

to the sudden application of high strain rates, as well as inertial effects. This rate was about 4 

times slower than the actual rate of the tests an acceptable figure, according to Kouretzis et al. 

(2014). The parameters of Fontainebleau NE34 sand in Table 3.2 were used for the 

simulation. The simulation of pile penetration was carried out in three steps: (1) generating 

the initial stress, (2) applying the vertical stress of 150 kPa to the top surface of sand and (3) 

penetrating the pile into the sand. 

6.6.2 Simulation results 

Figure 6.19 shows the simulated results of cone resistance qc versus the depth of 

penetration Z for the pile penetration test ICP07, demonstrating that the prediction of cone 

resistance by the enhanced SIMSAND model using the parameters of Fontainebleau sand and 

anisotropic parameters generally agrees with the measurement. 

 

Figure 6.19 Comparison between experiment and simulation of model pile test in 

Fontainebleau sand for the pile resistance against the penetration depth 

 Based on the FE simulation, the radial stresses at three pile penetration depths (of 

h=0.285 m, 0.46 m and 0.74 m) and four radial levels (positioned 2R, 3R, 5R and 8R pile 

radii) were plotted against the experiments in Figure 6.20. It shows that the radial stress states 

surrounding the cone can be well predicted by considering different penetration depths and 

radial distances from the pile axis. The penetration depth effect is very clear for given radial 

distances (3R), and the radial stress tends to be less affected when the radial distances exceed 

8 times pile radii during the pile penetration. 

Tests ICP07

Simulation
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Figure 6.20 Comparison of radial stress between test and simulation considering (a) different 

penetration depth, (b) different radial distance, and (c) combined 3D plot 

6.6.3 Monotonic response of sand surrounding the pile  

The influence of the mean effective stress on pile resistance was selected to be plotted 

with three level of penetration depths (0.285, 0.46 and 0.76 m) in Figure 6.21. A high-stress 

level is reached around the pile tip. At 5 times the pile radii(R), a notable mean effective 

stress accumulation is still seen. 

 

Figure 6.21 Simulation results of mean effective stress field around the cone of pile at the 

penetration depth of (a) 0.285m; (b) 0.46m and (c) 0.76m in Fontainebleau sand NE34 

 Figure 6.22 shows the displacement vectors when the  pile penetration reached 0.46 m. 

During the pile penetrating process, the recirculation of sand particles occurred beneath the 

cone tip of the pile. Displacement vectors along cross sections of the pile, in the range of 4 

times the radius of the pile (4R), are obviously changed in the direction of the sand particles’ 

movement. Highly compacted sand particles from beneath the pile cone are pushed radially 

upward with the cone movement, then compressed against the pile surface by the surrounding 

soil. 
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Figure 6.22 Displacement distribution surrounding the pile for penetration 0.46m (a) 

directions and (b) contours 

Figure 7.23 presents the distributions of void ratio of sand surrounding the pile for 

different penetrating depths. It can be found that high-level densification occurs beneath the 

pile tip during the pile driving process. On the contrary, the density of sand along the shaft of 

pile becomes loose, due to the dilation induced by large deformation of surrounding sand. 

 

Figure 6.23 Simulated void ratio field of three penetration depths: (a) 0.285m, (b) 0.46m and 

(c) 0.76m  

6.7 Simulation of cyclic model pile test 

6.7.1 Modelling of cyclic pile test` 

 The cyclic model pile test on Fontainebleau sand NE34 was performed by Bekki et al. 

(2014, 2016) at École Nationale des Ponts et Chaussées (ENPC) in a calibration chamber 

system. As shown in Figure 6.24, the cylindrical calibration chamber had a diameter of 52.4 

cm and a height of 70 cm. The sand sample was prepared by the air pluviation method (Dupla 

and Canou 1994; Andria-Ntoanina et al. 2010). The pile size of 36 mm outer diameter with a 

standard apex angle 60° closed-ended conical base was embedded in sand, 24 cm distant from 

the bottom of the chamber. The bottom and lateral sides were free and applied a horizontal 

pressure of 50 kPa and a vertical pressure of 125 kPa, respectively. For the cyclic test, sine 
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cycles of vertical displacement with a frequency of 1 Hz were applied in the vertical direction 

(alternating displacement of 0.5 mm). 

According to the cyclic model pile test (Bekki et al. 2016), an axisymmetric finite 

element model with 1,220 elements was generated that had the same size as the test chamber, 

as illustrated in Figure. 6.24. The top surface was fixed in the y-direction, and the lateral and 

bottom boundaries were applied by the surface pressure (50 and 125 kPa, respectively). The 

embedded pile was modelled as a rigid body, and the sand was modelled by four-node 

axisymmetric elements with one reduced integration point (CAX4R) in ABAQUS. To avoid 

large element distortion during pile penetration, again the ALE technique was adopted around 

the cone, as seen in the dashed zone in Figure 6.24(c). 

 

Figure 6.24 Geometry of cyclic model-pile penetration tests: (a) model-pile apparatus, (b) 

Geometry of centrifuge (Bekki et al. 2016) and (c) FEM modelling 

 Pile–soil interaction was simulated as surface-to-surface contact using a classical 

Coulomb friction law. The friction coefficient was set to =tan(/2)=0.3. According to the 

experimental program, the Fontainebleau sand NE34 (relative density of approximately 70% 

corresponding e0=0.62) was first consolidated. The cyclic loading of the pile was conducted 

by applying alternating displacement according to the experiment. 

6.7.2 Simulation results 

Figure 6.25 shows the simulated results of cone resistance versus the vertical cyclic axial 

displacement. The prediction of cone resistance by the enhanced SIMSAND model using the 

parameters of Fontainebleau sand with anisotropy is in general agreement with the 

measurement for different number of cycles. 
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Figure 6.25 Cone resistance of cyclic model pile test (a) experiment and (b) simulation 

6.7.3 Cyclic response of sand around pile 

Figure 6.26 presents the void ratio of sand surrounding the pile for the different number 

of cycles. It can be found that a high-level densification zone accumulates around the cone at 

100 cycles. Contrariwise, the density of sand particles adjacent to the cone becomes looser 

during the cyclic loading. Moreover, a large deformation can also be found surrounding the 

cone after 50 cycles. 

 

Figure 6.26 Cyclic densification behaviour surrounding the pile with different number of 

cycles (a) N=1 cycle, (b) N=10 cycles, (c) N=50 cycles and (c) N=100 cycles 

6.8 Conclusion  

 The enhanced SIMSAND model with shear stress reversal technique was proposed to 

describe cyclic behaviours of sand. The results of undrained cyclic triaxial tests, drained 

cyclic triaxial tests under constant p and under constant confining stress on Toyoura sand 

were well predicted by the cyclic model. Furthermore, the performance of the model was 
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validated by simulating the cyclic tests on Fontainebleau sand in both triaxial and simple 

shear loading conditions. 

 The capacity of the adopted FE platform with the enhanced cyclic SIMSAND model for 

large deformation analysis was further validated by simulating the model pile tests on 

Fontainebleau sand by different laboratories. Based on FE simulations, the basic features of 

sand surrounding the pile were presented: a high vertical contraction and horizontal dilation 

developed beneath the cone when the pile penetrates into the sand, with cyclic densification 

also occurring during the cyclic loading stage. Moreover, the extra features of the enhanced 

platform were also discussed based on the parametric study, which showed that effects of 

related inherent anisotropy parameters can amply control the shearing strength and stiffness 

during pile penetrating. All comparisons demonstrated that the enhanced FE platform is 

applicable to pile foundation design. 
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General conclusions and perspectives 

7.1 General conclusions 

 In this thesis, the simple shearing behaviour of Fontainebleau sand and its application to 

pile foundation were investigated. The main conclusions are presented as follows: 

1) The soil elementary tests used to investigate soil mechanical behaviour surrounding 

the pile were first summarized while noting that the simple shear tests can amply 

reproduce the stress state of soil surrounding the pile. Then the latest experimental 

results for simple shear tests of sand were also reviewed with an eye to 

understanding the monotonic and cyclic simple shear behaviour of sand. 

Furthermore, current constitutive models, ranging from phenomenological and 

multiscale models to discrete element models, were outlined with the objective of 

selecting a robust model for use in finite element analysis for a pile foundation. 

 

2) A recently developed critical state sand model (SIMSAND) was introduced along 

with a straightforward procedure for parameter determination. To evaluate the 

feasibility of this straightforward method, experimental results and numerical 

simulations for Toyoura sand were compared, demonstrating the proposed 

procedure’s ability to calibrate the model parameters. The SIMSAND model was 

finally implemented into a finite element code, and numerical modelling was 

performed through a series of shallow foundation tests using the determined 

parameters. Overall, the proposed straightforward procedure was validated as an 

efficient and reliable bridge from critical state–based constitutive modelling to finite 

element analysis. 

 

3) An enhanced SIMSAND model accounting for inherent anisotropy during the 

simple shear condition was developed, which was extended from the original 

isotropic strength to an anisotropic strength by incorporating parameters of cross 

anisotropy joint invariants. Based on finite element analysis, a series of three-

dimensional FE simulations having the same size and boundaries as laboratory 

GDS-type apparatus was carried out. The performance of finite element analysis 

with the enhanced model was validated. In addition, the inhomogeneity features of 

the physical specimen were illustrated. Finally, some complementary simulations 

for studying sample size effect were conducted for different aspect ratios of the 

cylindrical specimen. This study can improve the understanding of the simple shear 
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test condition while providing a computational tool for analysis of inhomogeneous 

behaviour in the specimen. 

 

4) A series of monotonic and cyclic undrained simple shear tests was performed on the 

Fontainebleau sand. Based on the monotonic results, an empirical expression for 

calculating shear stress at the phase transformation state was suggested that 

considered the effects of initial void ratios and initial normal effective stresses. 

Based on the cyclic results, a cyclic resistance diagram was obtained that provided 

information about the number of cycles necessary to reach instability as a function 

of cyclic and average shear stress levels. Furthermore, a calibration procedure for 

predicting the degradation of effective normal stress was proposed. Following this 

procedure, an analytical expression for evaluating normal effective stress 

degradation was developed with the following variables: initial void ratio, initial 

effective normal stress, cyclic shear stress, average shear stress, number of cycles. 

A series of additional tests including loading paths with different average shear 

stresses and cyclic shear stresses were used to verify the proposed analytical 

expression. All comparisons between experimental results and simulations indicated 

that the proposed method is capable of predicting degradation of effective normal 

stress under constant volume cyclic shear loading. 

 

5) A series of monotonic and cyclic drained simple shear tests was performed on 

Fontainebleau sand considering different initial states-relative density, normal stress, 

cyclic shear stress and average shear stress. The interpretation of experimental 

results indicated that the effect of key factors (i.e., relative density, normal stress 

level, cyclic shear stress ratio and average shear stress ratio) can be respectively 

formulated using a simple expression. An analytical model of volumetric strain 

accumulation was developed considering the four aforementioned effects. The 

parameters were calibrated based on training tests. The applicability of the model 

was validated by predicting the rest of tests with the calibrated parameters. 

 

6) An enhanced SIMSAND model featuring a shear stress reversal technique was 

introduced to describe cyclic behaviours of sand. The results of undrained cyclic 

triaxial tests and drained cyclic triaxial tests on Toyoura sand were well predicted. 

Moreover, the good performance was also validated by simulating the cyclic tests 

on Fontainebleau sand under both triaxial and simple shear conditions. Furthermore, 

simulations of the FE platform with an enhanced cyclic SIMSAND model for pile 

foundation were further validated through comparison of the results of model pile 

tests on Fontainebleau sand as performed by different laboratories. The basic 

features of sand adjacent to the pile were presented based on the FE simulations, 

including the development of high levels of vertical contraction and horizontal 

dilation beneath the cone when the pile penetrates into the sand, as well as 
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occurrence of cyclic densification during the cyclic loading stage. The extra features 

of the enhanced platform were also discussed based on the parametric study, which 

showed that effects of related inherent anisotropy parameters can amply control 

shearing strength and stiffness during pile penetrating. All comparisons 

demonstrated that the enhanced FE platform is applicable to the design of pile 

foundation. 

7.2 Perspectives 

Although the basic mechanical behaviours of soil have been investigated based on the 

GDS simple shear test as performed on Fontainebleau sand, inherent anisotropy during 

principal stress rotation, normal effective stress degradation and volumetric strain 

accumulation are described. What’s more, the outstanding performance of the adopted 

SIMSAND model is also highlighted in simulation of soil elementary tests, as well as also for 

engineering pile penetration and cyclic loading tests. Some shortcomings remain, requiring 

further investigations: 

1) More numerical studies need to be considered in relation to combined cyclic 

loading and application to pile foundation design in offshore engineering. 

 

2) The mechanical response of soils surrounding the pile, together with the behaviour 

of pile foundation under complex loadings, calls for further study in hopes of 

gaining insights into the micromechanics and microstructure of soils. 

 

3) The study could be further extended to a macro element–based design model. 
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Appendix A  Matlab code for parameters of SIMSAND 

A.1 MATLAB CODE-1 for elasticity parameters of sand 

deps_v=-de /(1+e (1)); 

kk =dp./deps_v; 

k_smooth=smooth(kk,1); 

k_c= k_smooth; 

%------------------------------------------ 

ka=k_c(a); 

kb=k_c(b); 

ea=e(a); 

eb=e(b); 

pa=p(a); 

pb=p(b); 

zeta=(log(ka./kb*(1+ea)/(1+eb)*(2.97-eb)^2/(2.97-ea)^2))/(log(pa/pb)); 

k0a=ka/pat*(1+ea)/(2.97-ea)^2*(pat/pa)^zeta; 

k0b=kb/pat*(1+eb)/(2.97-eb)^2*(pat/pb)^zeta; 

k0=( k0a+ k0b)/2.; 
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A.2 MATLAB CODE-2 for parameters of critical state line 

%----set function in p-q space 

fun_m = @(M, p_m)M*p_m; 

%----define CSL_M in p-q space 

M0=1; 

[M,resnorm,residual]=lsqcurvefit(fun_m,M0,p_m,q_m); 

fi=180/pi*asin(3*M/(6+M)); 

%---set function in e-logp space 

fun_ep = @(para_e, p_m) para_e(1)-para_e(2)*(p_m/101.325).^para_e(3); 

%define CSL_e in e-lnp space 

para_e0=[1 1 1]; 

[para_e,resnorm,residual]=lsqcurvefit(fun_ep,para_e0,p_m,e_m); 

%---print parameters 

eref=para_e(1) 

lambda=para_e(2) 

xi=para_e(3) 

%-------------------------------------------------------------------------- 
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A.3 MATLAB CODE-3 for data re-interpretations: 

%Calibrating the data matrix of parameters ec, epsdp, depsv_p, depsd_p.  

%---step1. Interpolated each data by 0.0001 epsa 

temp_ref=max(exp_epsa); 

eps_temp=0:1/1000:temp_ref; 

exp_q_cs=csaps(exp_epsa,exp_q,1,eps_temp); 

exp_p_cs=csaps(exp_epsa,exp_p,1,eps_temp); 

exp_e_cs=csaps(exp_epsa,exp_e,1,eps_temp); 

exp_epsa_cs=eps_temp; 

epsa=exp_epsa_cs; 

q=exp_q_cs; 

p=exp_p_cs; 

e=exp_e_cs; 

eta=q./p; 

% 

eref=0.875;                 % reference section 3.3 

lambda=0.085;              % reference section 3.3 

xi=0.229;                  % reference section 3.3 

pat=101.325 

ec=eref-lambda* (p/pat).^ xi;   % reference the Eq.(8)-a 

% 

%--- step2. Calibrating the array for dp ,dq depsv and depsd------- 

dp=[0; p(2:length(p))-p(1:(length(p)-1))]; 

dq=[0; q(2:length(q))- q(1:(length(q)-1))]; 

e0=e(1); 

epsv=-(e-e0)./(1+e0);   

epsv=smooth(epsv,1); 

depsv=[0; epsv(2:length(epsv))- epsv(1:(length(epsv)-1))]; 

epsd=epsa-epsv/3;   

depsd=[0; epsd(2:length(epsd))- epsd(1:(length(epsd)-1))]; 

% 

%-----step3. Calibrating the array of depsv_e, depsd_e, epsv_e and epsd_e 

pat=101.325; 

nu=0.25 ;       % reference the Eq.13 

K0=97.56;      % reference the Table 2 

n=0.604;       % reference the Table 2 

K=K0*pat*((2.97-e).^2/(1+e))*(p/pat).^n; 

G0=3*K0*(1-2*nu)/(2*(1+nu)); 

G=G0*pat*((2.97-e).^2/(1+e))*(p/pat).^n; 

depsv_e=dp./K; 

depsv_e=smooth(depsv_e, 1);                       

depsd_e=dq./(3*G); 

depsd_e=smooth(depsd_e,1);   

%-----                      

for i=1:length(depsv_e); 

    if i==1 

        epsv_e(i)=depsv_e(i); 
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    else 

        epsv_e(i)=epsv_e(i-1)+depsv_e(i); 

    end 

end 

epsv_e=epsv_e'; 

%----- 

for i=1:length(depsd_e); 

    if i==1 

        epsd_e(i)=depsd_e(i); 

    else 

        epsd_e(i)=epsd_e(i-1)+depsd_e(i); 

    end 

end 

epsd_e=epsd_e'; 

 

%----- step4. Calibrating the array of depsv_p, depsd_p, epsv_p and epsd_p 

depsv_p=depsv-depsv_e; 

depsv_p=smooth(depsv_p,1);                        

%------ 

depsd_p=depsd-depsd_e; 

depsd_p=smooth(depsd_p,1);                        

%------- 

for i=1:length(depsv_p); 

    if i==1 

        epsv_p(i)=depsv_p(i); 

    else 

        epsv_p(i)=epsv_p(i-1)+depsv_p(i); 

    end 

end 

epsv_p=epsv_p'; 

%-------- 

for i=1:length(depsd_p); 

    if i==1 

        epsd_p(i)=depsd_p(i); 

    else 

        epsd_p(i)=epsd_p(i-1)+depsd_p(i); 

    end 

end 

epsd_p=epsd_p'; 

%-------------------------------------------------------------------------- 
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A.4 MATLAB CODE-4 for interlocking parameters np, kp, nd and ad: 

%---Solveing the Eq.(2-17,2-18) to get the objective parameters np, kp, nd, ad-------- 

%---step 1. get the col of the corresponding strain a and b. 

% choosing the strain of points A and B  

a=0.01  % point A 

b=0.02  % point B 

[row,col_a]=min(abs(exp_epsa_cs-a)); 

p1=col_a; 

[row,col_b]=min(abs(exp_epsa_cs-a)); 

p2=col_b; 

%---step 2. get the known parameters for the Eq.(17,18) 

exp_epsa_a=exp_epsa_cs(p1); 

exp_epsa_b=exp_epsa_cs(p2); 

%----- 

ece=e-ec; 

ece_a=ece(p1); 

ece_b=ece(p2); 

%----- 

epsdp_a=epsd_p(p1); 

epsdp_b=epsd_p(p2); 

%----- 

qp=exp_q_cs./exp_p_cs; 

qp_a=qp(p1); 

qp_b=qp(p2); 

%----- 

depsvdp=depsv_p./depsd_p;                            

depsvdp_a=depsvdp(p1); 

depsvdp_b=depsvdp(p2); 

%----step 3. solve the Eq.(2-17,2-18) to get the roots (np, kp, nd, ad) 

fnp=@(np)(epsdp_a*qp_b*M*exp(ece_a*-(np))... 

-epsdp_b*qp_a*M*exp(ece_b*-(np))... 

-qp_a*qp_b*(epsdp_a-epsdp_b)); np0=1; 

np=fzero(fnp,np0); 

%---------------------------------------------------------- 

mp_a=M*exp(ece_a*(-np)); 

kp_a=mp_a*epsdp_a/qp_a-epsdp_a; 

%                                        

mp_b=M*exp(ece_b*(-np)); 

kp_b=mp_b*epsdp_b/qp_b-epsdp_b;  

%---------------------------------------------------------- 

fnd=@(nd)(... 

depsvdp_a./(M*exp(ece_a*(nd))-qp_a)... 

-depsvdp_b./(M*exp(ece_b*(nd))-qp_b));  

nd0=1; 

nd=fzero(fnd,nd0); 

%---------------------------------------------------------- 

mpt_a=M*exp(ece_a*(nd)); 

ad_a=depsvdp_a/(mpt_a-qp_a); 
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%                     

mpt_b=M*exp(ece_b*(nd)); 

ad_b=depsvdp_b/(mpt_b-qp_b);  

%---------------------------------------------------------- 
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